It was difficult to change internal op counts because there are many tests that depend on the specific seed that's currently based on op counts. With this change, get_seed() doesn't depend on the internal op count but the number of calls to get_seed() PiperOrigin-RevId: 294523232 Change-Id: I3dc05a8aed6d42dcc372b734615312eb94aea81d
83 lines
3.4 KiB
Python
83 lines
3.4 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for utilities working with arbitrarily nested structures."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.data.util import random_seed as data_random_seed
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import random_seed
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class RandomSeedTest(test.TestCase):
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testRandomSeed(self):
|
|
zero_t = constant_op.constant(0, dtype=dtypes.int64, name='zero')
|
|
one_t = constant_op.constant(1, dtype=dtypes.int64, name='one')
|
|
intmax_t = constant_op.constant(
|
|
2**31 - 1, dtype=dtypes.int64, name='intmax')
|
|
test_cases = [
|
|
# Each test case is a tuple with input to get_seed:
|
|
# (input_graph_seed, input_op_seed)
|
|
# and output from get_seed:
|
|
# (output_graph_seed, output_op_seed)
|
|
((None, None), (0, 0)),
|
|
((None, 1), (random_seed.DEFAULT_GRAPH_SEED, 1)),
|
|
((1, 1), (1, 1)),
|
|
((0, 0), (0, 2**31 - 1)), # Avoid nondeterministic (0, 0) output
|
|
((2**31 - 1, 0), (0, 2**31 - 1)), # Don't wrap to (0, 0) either
|
|
((0, 2**31 - 1), (0, 2**31 - 1)), # Wrapping for the other argument
|
|
# Once more, with tensor-valued arguments
|
|
((None, one_t), (random_seed.DEFAULT_GRAPH_SEED, 1)),
|
|
((1, one_t), (1, 1)),
|
|
((0, zero_t), (0, 2**31 - 1)), # Avoid nondeterministic (0, 0) output
|
|
((2**31 - 1, zero_t), (0, 2**31 - 1)), # Don't wrap to (0, 0) either
|
|
((0, intmax_t), (0, 2**31 - 1)), # Wrapping for the other argument
|
|
]
|
|
for tc in test_cases:
|
|
tinput, toutput = tc[0], tc[1]
|
|
random_seed.set_random_seed(tinput[0])
|
|
g_seed, op_seed = data_random_seed.get_seed(tinput[1])
|
|
g_seed = self.evaluate(g_seed)
|
|
op_seed = self.evaluate(op_seed)
|
|
msg = 'test_case = {0}, got {1}, want {2}'.format(
|
|
tinput, (g_seed, op_seed), toutput)
|
|
self.assertEqual((g_seed, op_seed), toutput, msg=msg)
|
|
random_seed.set_random_seed(None)
|
|
|
|
if not context.executing_eagerly():
|
|
random_seed.set_random_seed(1)
|
|
for i in range(10):
|
|
tinput = (1, None)
|
|
toutput = (1, i)
|
|
random_seed.set_random_seed(tinput[0])
|
|
g_seed, op_seed = data_random_seed.get_seed(tinput[1])
|
|
g_seed = self.evaluate(g_seed)
|
|
op_seed = self.evaluate(op_seed)
|
|
msg = 'test_case = {0}, got {1}, want {2}'.format(
|
|
1, (g_seed, op_seed), toutput)
|
|
self.assertEqual((g_seed, op_seed), toutput, msg=msg)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|