A. Unique TensorFlower b30c40a4e1 Make tf.random.get_seed() doesn't depend on op count, but the number of calls to it.
It was difficult to change internal op counts because there are many tests that depend on the specific seed that's currently based on op counts.  With this change, get_seed() doesn't depend on the internal op count but the number of calls to get_seed()

PiperOrigin-RevId: 294523232
Change-Id: I3dc05a8aed6d42dcc372b734615312eb94aea81d
2020-02-11 14:40:12 -08:00

83 lines
3.4 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for utilities working with arbitrarily nested structures."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.data.util import random_seed as data_random_seed
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import test_util
from tensorflow.python.platform import test
class RandomSeedTest(test.TestCase):
@test_util.run_in_graph_and_eager_modes
def testRandomSeed(self):
zero_t = constant_op.constant(0, dtype=dtypes.int64, name='zero')
one_t = constant_op.constant(1, dtype=dtypes.int64, name='one')
intmax_t = constant_op.constant(
2**31 - 1, dtype=dtypes.int64, name='intmax')
test_cases = [
# Each test case is a tuple with input to get_seed:
# (input_graph_seed, input_op_seed)
# and output from get_seed:
# (output_graph_seed, output_op_seed)
((None, None), (0, 0)),
((None, 1), (random_seed.DEFAULT_GRAPH_SEED, 1)),
((1, 1), (1, 1)),
((0, 0), (0, 2**31 - 1)), # Avoid nondeterministic (0, 0) output
((2**31 - 1, 0), (0, 2**31 - 1)), # Don't wrap to (0, 0) either
((0, 2**31 - 1), (0, 2**31 - 1)), # Wrapping for the other argument
# Once more, with tensor-valued arguments
((None, one_t), (random_seed.DEFAULT_GRAPH_SEED, 1)),
((1, one_t), (1, 1)),
((0, zero_t), (0, 2**31 - 1)), # Avoid nondeterministic (0, 0) output
((2**31 - 1, zero_t), (0, 2**31 - 1)), # Don't wrap to (0, 0) either
((0, intmax_t), (0, 2**31 - 1)), # Wrapping for the other argument
]
for tc in test_cases:
tinput, toutput = tc[0], tc[1]
random_seed.set_random_seed(tinput[0])
g_seed, op_seed = data_random_seed.get_seed(tinput[1])
g_seed = self.evaluate(g_seed)
op_seed = self.evaluate(op_seed)
msg = 'test_case = {0}, got {1}, want {2}'.format(
tinput, (g_seed, op_seed), toutput)
self.assertEqual((g_seed, op_seed), toutput, msg=msg)
random_seed.set_random_seed(None)
if not context.executing_eagerly():
random_seed.set_random_seed(1)
for i in range(10):
tinput = (1, None)
toutput = (1, i)
random_seed.set_random_seed(tinput[0])
g_seed, op_seed = data_random_seed.get_seed(tinput[1])
g_seed = self.evaluate(g_seed)
op_seed = self.evaluate(op_seed)
msg = 'test_case = {0}, got {1}, want {2}'.format(
1, (g_seed, op_seed), toutput)
self.assertEqual((g_seed, op_seed), toutput, msg=msg)
if __name__ == '__main__':
test.main()