STT-tensorflow/tensorflow/lite/testing/op_tests/range.py
Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

56 lines
2.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for range."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_scalar_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_range_tests(options):
"""Make a set of tests to do range."""
test_parameters = [{
"dtype": [tf.int32, tf.float32],
"offset": [10, 100, 1000],
"delta": [1, 2, 3, 4, -1, -2, -3, -4],
}]
def build_graph(parameters):
"""Build the range op testing graph."""
input_tensor = tf.compat.v1.placeholder(
dtype=parameters["dtype"], name=("start"), shape=[])
if parameters["delta"] < 0:
offset = parameters["offset"] * -1
else:
offset = parameters["offset"]
delta = parameters["delta"]
limit_tensor = input_tensor + offset
delta_tensor = tf.constant(delta, dtype=parameters["dtype"])
out = tf.range(input_tensor, limit_tensor, delta_tensor)
return [input_tensor], [out]
def build_inputs(parameters, sess, inputs, outputs):
input_value = create_scalar_data(parameters["dtype"])
return [input_value], sess.run(
outputs, feed_dict=dict(zip(inputs, [input_value])))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)