STT-tensorflow/tensorflow/lite/testing/op_tests/nearest_upsample.py
Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

80 lines
3.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for nearest upsample."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_nearest_upsample_tests(options):
"""Make a set of tests to do nearest_upsample."""
# Chose a set of parameters
test_parameters = [{
"input_shape": [[1, 10, 10, 64], [3, 8, 32]],
"scale_n_axis": [([2, 2], [1, 2]), ([3, 4], [1, 2]), ([3], [1])],
"dtype": [tf.float32, tf.int32],
}]
def new_shape_for_upsample(original_shape, scales, axis):
"""Calculate the input shape & ones shape, also the upsample shape."""
input_new_shape = []
ones_new_shape = []
upsample_new_shape = []
j = 0
for i in range(len(original_shape)):
input_new_shape.append(original_shape[i])
ones_new_shape.append(1)
if j < len(scales) and axis[j] == i:
input_new_shape.append(1)
ones_new_shape.append(scales[j])
upsample_new_shape.append(original_shape[i] * scales[j])
j += 1
else:
upsample_new_shape.append(original_shape[i])
return input_new_shape, ones_new_shape, upsample_new_shape
def build_graph(parameters):
"""Build the nearest upsample testing graph."""
input_shape = parameters["input_shape"]
input_tensor = tf.compat.v1.placeholder(
dtype=parameters["dtype"], name="input", shape=input_shape)
scales, axis = parameters["scale_n_axis"]
input_new_shape, ones_new_shape, new_shape = new_shape_for_upsample(
input_shape, scales, axis)
out = tf.compat.v1.reshape(input_tensor,
input_new_shape) * tf.compat.v1.ones(
ones_new_shape, dtype=parameters["dtype"])
out = tf.compat.v1.reshape(out, new_shape)
return [input_tensor], [out]
def build_inputs(parameters, sess, inputs, outputs):
input_values = create_tensor_data(
parameters["dtype"],
parameters["input_shape"],
min_value=-10,
max_value=10)
return [input_values], sess.run(
outputs, feed_dict=dict(zip(inputs, [input_values])))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)