STT-tensorflow/tensorflow/lite/kernels/rfft2d_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

159 lines
5.2 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <complex>
#include <vector>
#include <gtest/gtest.h>
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/custom_ops_register.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/testing/util.h"
namespace tflite {
namespace ops {
namespace custom {
TfLiteRegistration* Register_RFFT2D();
namespace {
using std::complex;
using ::testing::ElementsAreArray;
class Rfft2dOpModel : public SingleOpModel {
public:
Rfft2dOpModel(const TensorData& input, const TensorData& fft_lengths) {
input_ = AddInput(input);
fft_lengths_ = AddInput(fft_lengths);
TensorType output_type = TensorType_COMPLEX64;
output_ = AddOutput({output_type, {}});
const std::vector<uint8_t> custom_option;
SetCustomOp("Rfft2d", custom_option, Register_RFFT2D);
BuildInterpreter({GetShape(input_)});
}
int input() { return input_; }
int fft_lengths() { return fft_lengths_; }
std::vector<complex<float>> GetOutput() {
return ExtractVector<complex<float>>(output_);
}
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
private:
int input_;
int fft_lengths_;
int output_;
};
TEST(Rfft2dOpTest, FftLengthMatchesInputSize) {
Rfft2dOpModel model({TensorType_FLOAT32, {4, 4}}, {TensorType_INT32, {2}});
// clang-format off
model.PopulateTensor<float>(model.input(),
{1, 2, 3, 4,
3, 8, 6, 3,
5, 2, 7, 6,
9, 5, 8, 3});
// clang-format on
model.PopulateTensor<int32_t>(model.fft_lengths(), {4, 4});
model.Invoke();
std::complex<float> expected_result[12] = {
{75, 0}, {-6, -1}, {9, 0}, {-10, 5}, {-3, 2}, {-6, 11},
{-15, 0}, {-2, 13}, {-5, 0}, {-10, -5}, {3, -6}, {-6, -11}};
EXPECT_THAT(model.GetOutput(), ElementsAreArray(expected_result));
}
TEST(Rfft2dOpTest, FftLengthSmallerThanInputSize) {
Rfft2dOpModel model({TensorType_FLOAT32, {4, 5}}, {TensorType_INT32, {2}});
// clang-format off
model.PopulateTensor<float>(model.input(),
{1, 2, 3, 4, 0,
3, 8, 6, 3, 0,
5, 2, 7, 6, 0,
9, 5, 8, 3, 0});
// clang-format on
model.PopulateTensor<int32_t>(model.fft_lengths(), {4, 4});
model.Invoke();
std::complex<float> expected_result[12] = {
{75, 0}, {-6, -1}, {9, 0}, {-10, 5}, {-3, 2}, {-6, 11},
{-15, 0}, {-2, 13}, {-5, 0}, {-10, -5}, {3, -6}, {-6, -11}};
EXPECT_THAT(model.GetOutput(), ElementsAreArray(expected_result));
}
TEST(Rfft2dOpTest, FftLengthGreaterThanInputSize) {
Rfft2dOpModel model({TensorType_FLOAT32, {3, 4}}, {TensorType_INT32, {2}});
// clang-format off
model.PopulateTensor<float>(model.input(),
{1, 2, 3, 4,
3, 8, 6, 3,
5, 2, 7, 6});
// clang-format on
model.PopulateTensor<int32_t>(model.fft_lengths(), {4, 8});
model.Invoke();
// clang-format off
std::complex<float> expected_result[20] = {
{50, 0}, {8.29289341, -33.6776695}, {-7, 1}, {9.70710659, -1.67766953},
{0, 0},
{-10, -20}, {-16.3639603, -1.12132037}, {-5, 1}, {-7.19238806, -2.05025244},
{-6, 2},
{10, 0}, {-4.7781744, -6.12132025}, {-1, 11}, {10.7781744, 1.87867963},
{4, 0},
{-10, 20}, {11.1923885, 11.9497471}, {5, -5}, {-3.63603902, -3.12132025},
{-6, -2}};
// clang-format on
EXPECT_THAT(model.GetOutput(), ElementsAreArray(expected_result));
}
TEST(Rfft2dOpTest, InputDimsGreaterThan2) {
Rfft2dOpModel model({TensorType_FLOAT32, {2, 2, 4}}, {TensorType_INT32, {2}});
// clang-format off
model.PopulateTensor<float>(model.input(),
{1., 2., 3., 4.,
3., 8., 6., 3.,
5., 2., 7., 6.,
7., 3., 23., 5.});
// clang-format on
model.PopulateTensor<int32_t>(model.fft_lengths(), {2, 4});
model.Invoke();
// clang-format off
std::complex<float> expected_result[12] = {
{30., 0.}, {-5, -3.}, { -4., 0.},
{-10., 0.}, {1., 7.}, { 0., 0.},
{58., 0.}, {-18., 6.}, { 26., 0.},
{-18., 0.}, { 14., 2.}, {-18., 0.}};
// clang-format on
EXPECT_THAT(model.GetOutput(), ElementsAreArray(expected_result));
}
} // namespace
} // namespace custom
} // namespace ops
} // namespace tflite
int main(int argc, char** argv) {
::tflite::LogToStderr();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}