STT-tensorflow/tensorflow/lite/delegates/xnnpack/fully_connected_tester.cc
Marat Dukhan a7048d89a1 Support models with FP16 weights in XNNPACK delegate
PiperOrigin-RevId: 313505742
Change-Id: Id21f7528741073e93a7132d529c3cd79957a73fb
2020-05-27 18:55:36 -07:00

288 lines
12 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/xnnpack/fully_connected_tester.h"
#include <array>
#include <cstdint>
#include <functional>
#include <numeric>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include <fp16.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
namespace tflite {
namespace xnnpack {
std::vector<int32_t> FullyConnectedTester::OutputShape() const {
EXPECT_NE(input_shape_.size(), 0);
if (KeepDims()) {
std::vector<int32_t> output_shape(input_shape_.cbegin(),
input_shape_.cend() - 1);
output_shape.push_back(OutputChannels());
return output_shape;
} else {
EXPECT_EQ(InputSize() % InputChannels(), 0);
return std::vector<int32_t>(
{InputSize() / InputChannels(), OutputChannels()});
}
}
void FullyConnectedTester::Test(TfLiteDelegate* delegate) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto input_rng =
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<char> buffer = CreateTfLiteModel();
const Model* model = GetModel(buffer.data());
std::unique_ptr<Interpreter> delegate_interpreter;
ASSERT_EQ(
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
&delegate_interpreter),
kTfLiteOk);
std::unique_ptr<Interpreter> default_interpreter;
ASSERT_EQ(
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
&default_interpreter),
kTfLiteOk);
ASSERT_TRUE(delegate_interpreter);
ASSERT_TRUE(default_interpreter);
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
ASSERT_EQ(default_interpreter->inputs().size(), 1);
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
ASSERT_EQ(default_interpreter->outputs().size(), 1);
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
float* default_input_data = default_interpreter->typed_tensor<float>(
default_interpreter->inputs()[0]);
std::generate(default_input_data, default_input_data + InputSize(),
std::ref(input_rng));
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
delegate_interpreter->inputs()[0]);
std::copy(default_input_data, default_input_data + InputSize(),
delegate_input_data);
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
float* default_output_data = default_interpreter->typed_tensor<float>(
default_interpreter->outputs()[0]);
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
delegate_interpreter->outputs()[0]);
for (size_t i = 0; i < ComputeSize(OutputShape()); i++) {
ASSERT_NEAR(default_output_data[i], delegate_output_data[i],
std::numeric_limits<float>::epsilon() *
std::max(std::abs(default_output_data[i]) * 10.0f, 1.0f));
}
}
std::vector<char> FullyConnectedTester::CreateTfLiteModel() const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto range_rng = std::bind(
std::uniform_real_distribution<float>(-25.0f, 25.0f), std::ref(rng));
flatbuffers::FlatBufferBuilder builder;
std::vector<flatbuffers::Offset<OperatorCode>> operator_codes{
{CreateOperatorCode(builder, BuiltinOperator_FULLY_CONNECTED)}};
std::vector<flatbuffers::Offset<Operator>> operators;
std::vector<flatbuffers::Offset<Buffer>> buffers{
{CreateBuffer(builder, builder.CreateVector({}))}};
if (FP16Weights()) {
operator_codes.emplace_back(
CreateOperatorCode(builder, BuiltinOperator_DEQUANTIZE));
std::vector<uint16_t> filter_data(InputChannels() * OutputChannels());
std::vector<uint16_t> bias_data(OutputChannels());
for (int32_t oc = 0; oc < OutputChannels(); oc++) {
// Use the same range of all-positive or all-negative values to generate
// all filter & bias weights within the same channel, but different ranges
// for different output channels. This ensures that no catastrophic
// cancellation occur, but test covers both positive and negative inputs.
const float range = range_rng();
auto value_rng =
std::bind(fp16_ieee_from_fp32_value,
std::bind(std::uniform_real_distribution<float>(
std::min(range, 0.0f), std::max(range, 0.0f)),
std::ref(rng)));
bias_data[oc] = value_rng();
for (int32_t ic = 0; ic < InputChannels(); ic++) {
filter_data[oc * InputChannels() + ic] = value_rng();
}
}
buffers.emplace_back(CreateBuffer(
builder, builder.CreateVector(
reinterpret_cast<const uint8_t*>(filter_data.data()),
sizeof(uint16_t) * filter_data.size())));
buffers.emplace_back(CreateBuffer(
builder,
builder.CreateVector(reinterpret_cast<const uint8_t*>(bias_data.data()),
sizeof(uint16_t) * bias_data.size())));
const std::array<int32_t, 1> dequantize_filter_inputs{{0}};
const std::array<int32_t, 1> dequantize_filter_outputs{{3}};
operators.emplace_back(CreateOperator(
builder, /*opcode_index=*/1,
builder.CreateVector<int32_t>(dequantize_filter_inputs.data(),
dequantize_filter_inputs.size()),
builder.CreateVector<int32_t>(dequantize_filter_outputs.data(),
dequantize_filter_outputs.size())));
const std::array<int32_t, 1> dequantize_bias_inputs{{1}};
const std::array<int32_t, 1> dequantize_bias_outputs{{4}};
operators.emplace_back(CreateOperator(
builder, /*opcode_index=*/1,
builder.CreateVector<int32_t>(dequantize_bias_inputs.data(),
dequantize_bias_inputs.size()),
builder.CreateVector<int32_t>(dequantize_bias_outputs.data(),
dequantize_bias_outputs.size())));
} else {
std::vector<float> filter_data(InputChannels() * OutputChannels());
std::vector<float> bias_data(OutputChannels());
for (int32_t oc = 0; oc < OutputChannels(); oc++) {
// Use the same range of all-positive or all-negative values to generate
// all filter & bias weights within the same channel, but different ranges
// for different output channels. This ensures that no catastrophic
// cancellation occur, but test covers both positive and negative inputs.
const float range = range_rng();
auto value_rng =
std::bind(std::uniform_real_distribution<float>(
std::min(range, 0.0f), std::max(range, 0.0f)),
std::ref(rng));
bias_data[oc] = value_rng();
for (int32_t ic = 0; ic < InputChannels(); ic++) {
filter_data[oc * InputChannels() + ic] = value_rng();
}
}
buffers.emplace_back(CreateBuffer(
builder, builder.CreateVector(
reinterpret_cast<const uint8_t*>(filter_data.data()),
sizeof(float) * filter_data.size())));
buffers.emplace_back(CreateBuffer(
builder,
builder.CreateVector(reinterpret_cast<const uint8_t*>(bias_data.data()),
sizeof(float) * bias_data.size())));
}
const std::array<int32_t, 2> filter_shape(
{OutputChannels(), InputChannels()});
const std::array<int32_t, 1> bias_shape({OutputChannels()});
const std::vector<int32_t> output_shape = OutputShape();
std::vector<flatbuffers::Offset<Tensor>> tensors;
if (FP16Weights()) {
tensors.emplace_back(CreateTensor(
builder,
builder.CreateVector<int32_t>(filter_shape.data(), filter_shape.size()),
TensorType_FLOAT16, /*buffer=*/1));
tensors.emplace_back(CreateTensor(
builder,
builder.CreateVector<int32_t>(bias_shape.data(), bias_shape.size()),
TensorType_FLOAT16, /*buffer=*/2));
}
tensors.emplace_back(CreateTensor(
builder,
builder.CreateVector<int32_t>(InputShape().data(), InputShape().size()),
TensorType_FLOAT32));
tensors.emplace_back(CreateTensor(
builder,
builder.CreateVector<int32_t>(filter_shape.data(), filter_shape.size()),
TensorType_FLOAT32, /*buffer=*/FP16Weights() ? 0 : 1));
tensors.emplace_back(CreateTensor(
builder,
builder.CreateVector<int32_t>(bias_shape.data(), bias_shape.size()),
TensorType_FLOAT32, /*buffer=*/FP16Weights() ? 0 : 2));
tensors.emplace_back(CreateTensor(
builder,
builder.CreateVector<int32_t>(output_shape.data(), output_shape.size()),
TensorType_FLOAT32));
flatbuffers::Offset<FullyConnectedOptions> fully_connected_options =
CreateFullyConnectedOptions(builder, Activation(),
FullyConnectedOptionsWeightsFormat_DEFAULT,
KeepDims());
const std::array<int32_t, 3> op_inputs{
{static_cast<int>(tensors.size()) - 4,
static_cast<int>(tensors.size()) - 3,
static_cast<int>(tensors.size()) - 2}};
const std::array<int32_t, 1> op_outputs{
{static_cast<int>(tensors.size()) - 1}};
operators.emplace_back(CreateOperator(
builder, /*opcode_index=*/0,
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
BuiltinOptions_FullyConnectedOptions, fully_connected_options.Union()));
const std::array<int32_t, 1> subgraph_inputs{
{static_cast<int>(tensors.size()) - 4}};
const std::array<int32_t, 1> subgraph_outputs{
{static_cast<int>(tensors.size()) - 1}};
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
builder, builder.CreateVector(tensors.data(), tensors.size()),
builder.CreateVector<int32_t>(subgraph_inputs.data(),
subgraph_inputs.size()),
builder.CreateVector<int32_t>(subgraph_outputs.data(),
subgraph_outputs.size()),
builder.CreateVector(operators.data(), operators.size()));
flatbuffers::Offset<flatbuffers::String> description =
builder.CreateString("Fully Connected model");
flatbuffers::Offset<Model> model_buffer = CreateModel(
builder, TFLITE_SCHEMA_VERSION,
builder.CreateVector(operator_codes.data(), operator_codes.size()),
builder.CreateVector(&subgraph, 1), description,
builder.CreateVector(buffers.data(), buffers.size()));
builder.Finish(model_buffer);
return std::vector<char>(builder.GetBufferPointer(),
builder.GetBufferPointer() + builder.GetSize());
}
int32_t FullyConnectedTester::ComputeSize(const std::vector<int32_t>& shape) {
return std::accumulate(shape.cbegin(), shape.cend(), 1,
std::multiplies<int32_t>());
}
} // namespace xnnpack
} // namespace tflite