288 lines
12 KiB
C++
288 lines
12 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/delegates/xnnpack/fully_connected_tester.h"
|
|
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <fp16.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/model.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
#include "tensorflow/lite/version.h"
|
|
|
|
namespace tflite {
|
|
namespace xnnpack {
|
|
|
|
std::vector<int32_t> FullyConnectedTester::OutputShape() const {
|
|
EXPECT_NE(input_shape_.size(), 0);
|
|
if (KeepDims()) {
|
|
std::vector<int32_t> output_shape(input_shape_.cbegin(),
|
|
input_shape_.cend() - 1);
|
|
output_shape.push_back(OutputChannels());
|
|
return output_shape;
|
|
} else {
|
|
EXPECT_EQ(InputSize() % InputChannels(), 0);
|
|
return std::vector<int32_t>(
|
|
{InputSize() / InputChannels(), OutputChannels()});
|
|
}
|
|
}
|
|
|
|
void FullyConnectedTester::Test(TfLiteDelegate* delegate) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto input_rng =
|
|
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
|
|
|
|
std::vector<char> buffer = CreateTfLiteModel();
|
|
const Model* model = GetModel(buffer.data());
|
|
|
|
std::unique_ptr<Interpreter> delegate_interpreter;
|
|
ASSERT_EQ(
|
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
|
&delegate_interpreter),
|
|
kTfLiteOk);
|
|
std::unique_ptr<Interpreter> default_interpreter;
|
|
ASSERT_EQ(
|
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
|
&default_interpreter),
|
|
kTfLiteOk);
|
|
|
|
ASSERT_TRUE(delegate_interpreter);
|
|
ASSERT_TRUE(default_interpreter);
|
|
|
|
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
|
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
|
|
|
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
|
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
|
|
|
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
|
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
|
|
|
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
|
|
|
float* default_input_data = default_interpreter->typed_tensor<float>(
|
|
default_interpreter->inputs()[0]);
|
|
std::generate(default_input_data, default_input_data + InputSize(),
|
|
std::ref(input_rng));
|
|
|
|
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
|
|
delegate_interpreter->inputs()[0]);
|
|
std::copy(default_input_data, default_input_data + InputSize(),
|
|
delegate_input_data);
|
|
|
|
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
|
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
|
|
|
float* default_output_data = default_interpreter->typed_tensor<float>(
|
|
default_interpreter->outputs()[0]);
|
|
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
|
|
delegate_interpreter->outputs()[0]);
|
|
|
|
for (size_t i = 0; i < ComputeSize(OutputShape()); i++) {
|
|
ASSERT_NEAR(default_output_data[i], delegate_output_data[i],
|
|
std::numeric_limits<float>::epsilon() *
|
|
std::max(std::abs(default_output_data[i]) * 10.0f, 1.0f));
|
|
}
|
|
}
|
|
|
|
std::vector<char> FullyConnectedTester::CreateTfLiteModel() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto range_rng = std::bind(
|
|
std::uniform_real_distribution<float>(-25.0f, 25.0f), std::ref(rng));
|
|
|
|
flatbuffers::FlatBufferBuilder builder;
|
|
std::vector<flatbuffers::Offset<OperatorCode>> operator_codes{
|
|
{CreateOperatorCode(builder, BuiltinOperator_FULLY_CONNECTED)}};
|
|
std::vector<flatbuffers::Offset<Operator>> operators;
|
|
std::vector<flatbuffers::Offset<Buffer>> buffers{
|
|
{CreateBuffer(builder, builder.CreateVector({}))}};
|
|
|
|
if (FP16Weights()) {
|
|
operator_codes.emplace_back(
|
|
CreateOperatorCode(builder, BuiltinOperator_DEQUANTIZE));
|
|
|
|
std::vector<uint16_t> filter_data(InputChannels() * OutputChannels());
|
|
std::vector<uint16_t> bias_data(OutputChannels());
|
|
|
|
for (int32_t oc = 0; oc < OutputChannels(); oc++) {
|
|
// Use the same range of all-positive or all-negative values to generate
|
|
// all filter & bias weights within the same channel, but different ranges
|
|
// for different output channels. This ensures that no catastrophic
|
|
// cancellation occur, but test covers both positive and negative inputs.
|
|
const float range = range_rng();
|
|
auto value_rng =
|
|
std::bind(fp16_ieee_from_fp32_value,
|
|
std::bind(std::uniform_real_distribution<float>(
|
|
std::min(range, 0.0f), std::max(range, 0.0f)),
|
|
std::ref(rng)));
|
|
|
|
bias_data[oc] = value_rng();
|
|
for (int32_t ic = 0; ic < InputChannels(); ic++) {
|
|
filter_data[oc * InputChannels() + ic] = value_rng();
|
|
}
|
|
}
|
|
|
|
buffers.emplace_back(CreateBuffer(
|
|
builder, builder.CreateVector(
|
|
reinterpret_cast<const uint8_t*>(filter_data.data()),
|
|
sizeof(uint16_t) * filter_data.size())));
|
|
buffers.emplace_back(CreateBuffer(
|
|
builder,
|
|
builder.CreateVector(reinterpret_cast<const uint8_t*>(bias_data.data()),
|
|
sizeof(uint16_t) * bias_data.size())));
|
|
|
|
const std::array<int32_t, 1> dequantize_filter_inputs{{0}};
|
|
const std::array<int32_t, 1> dequantize_filter_outputs{{3}};
|
|
operators.emplace_back(CreateOperator(
|
|
builder, /*opcode_index=*/1,
|
|
builder.CreateVector<int32_t>(dequantize_filter_inputs.data(),
|
|
dequantize_filter_inputs.size()),
|
|
builder.CreateVector<int32_t>(dequantize_filter_outputs.data(),
|
|
dequantize_filter_outputs.size())));
|
|
const std::array<int32_t, 1> dequantize_bias_inputs{{1}};
|
|
const std::array<int32_t, 1> dequantize_bias_outputs{{4}};
|
|
operators.emplace_back(CreateOperator(
|
|
builder, /*opcode_index=*/1,
|
|
builder.CreateVector<int32_t>(dequantize_bias_inputs.data(),
|
|
dequantize_bias_inputs.size()),
|
|
builder.CreateVector<int32_t>(dequantize_bias_outputs.data(),
|
|
dequantize_bias_outputs.size())));
|
|
} else {
|
|
std::vector<float> filter_data(InputChannels() * OutputChannels());
|
|
std::vector<float> bias_data(OutputChannels());
|
|
|
|
for (int32_t oc = 0; oc < OutputChannels(); oc++) {
|
|
// Use the same range of all-positive or all-negative values to generate
|
|
// all filter & bias weights within the same channel, but different ranges
|
|
// for different output channels. This ensures that no catastrophic
|
|
// cancellation occur, but test covers both positive and negative inputs.
|
|
const float range = range_rng();
|
|
auto value_rng =
|
|
std::bind(std::uniform_real_distribution<float>(
|
|
std::min(range, 0.0f), std::max(range, 0.0f)),
|
|
std::ref(rng));
|
|
|
|
bias_data[oc] = value_rng();
|
|
for (int32_t ic = 0; ic < InputChannels(); ic++) {
|
|
filter_data[oc * InputChannels() + ic] = value_rng();
|
|
}
|
|
}
|
|
|
|
buffers.emplace_back(CreateBuffer(
|
|
builder, builder.CreateVector(
|
|
reinterpret_cast<const uint8_t*>(filter_data.data()),
|
|
sizeof(float) * filter_data.size())));
|
|
buffers.emplace_back(CreateBuffer(
|
|
builder,
|
|
builder.CreateVector(reinterpret_cast<const uint8_t*>(bias_data.data()),
|
|
sizeof(float) * bias_data.size())));
|
|
}
|
|
|
|
const std::array<int32_t, 2> filter_shape(
|
|
{OutputChannels(), InputChannels()});
|
|
const std::array<int32_t, 1> bias_shape({OutputChannels()});
|
|
|
|
const std::vector<int32_t> output_shape = OutputShape();
|
|
std::vector<flatbuffers::Offset<Tensor>> tensors;
|
|
if (FP16Weights()) {
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(filter_shape.data(), filter_shape.size()),
|
|
TensorType_FLOAT16, /*buffer=*/1));
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(bias_shape.data(), bias_shape.size()),
|
|
TensorType_FLOAT16, /*buffer=*/2));
|
|
}
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(InputShape().data(), InputShape().size()),
|
|
TensorType_FLOAT32));
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(filter_shape.data(), filter_shape.size()),
|
|
TensorType_FLOAT32, /*buffer=*/FP16Weights() ? 0 : 1));
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(bias_shape.data(), bias_shape.size()),
|
|
TensorType_FLOAT32, /*buffer=*/FP16Weights() ? 0 : 2));
|
|
tensors.emplace_back(CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(output_shape.data(), output_shape.size()),
|
|
TensorType_FLOAT32));
|
|
|
|
flatbuffers::Offset<FullyConnectedOptions> fully_connected_options =
|
|
CreateFullyConnectedOptions(builder, Activation(),
|
|
FullyConnectedOptionsWeightsFormat_DEFAULT,
|
|
KeepDims());
|
|
|
|
const std::array<int32_t, 3> op_inputs{
|
|
{static_cast<int>(tensors.size()) - 4,
|
|
static_cast<int>(tensors.size()) - 3,
|
|
static_cast<int>(tensors.size()) - 2}};
|
|
const std::array<int32_t, 1> op_outputs{
|
|
{static_cast<int>(tensors.size()) - 1}};
|
|
operators.emplace_back(CreateOperator(
|
|
builder, /*opcode_index=*/0,
|
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
|
|
BuiltinOptions_FullyConnectedOptions, fully_connected_options.Union()));
|
|
|
|
const std::array<int32_t, 1> subgraph_inputs{
|
|
{static_cast<int>(tensors.size()) - 4}};
|
|
const std::array<int32_t, 1> subgraph_outputs{
|
|
{static_cast<int>(tensors.size()) - 1}};
|
|
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
|
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
|
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
|
subgraph_inputs.size()),
|
|
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
|
subgraph_outputs.size()),
|
|
builder.CreateVector(operators.data(), operators.size()));
|
|
|
|
flatbuffers::Offset<flatbuffers::String> description =
|
|
builder.CreateString("Fully Connected model");
|
|
|
|
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
|
builder, TFLITE_SCHEMA_VERSION,
|
|
builder.CreateVector(operator_codes.data(), operator_codes.size()),
|
|
builder.CreateVector(&subgraph, 1), description,
|
|
builder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
builder.Finish(model_buffer);
|
|
|
|
return std::vector<char>(builder.GetBufferPointer(),
|
|
builder.GetBufferPointer() + builder.GetSize());
|
|
}
|
|
|
|
int32_t FullyConnectedTester::ComputeSize(const std::vector<int32_t>& shape) {
|
|
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
|
std::multiplies<int32_t>());
|
|
}
|
|
|
|
} // namespace xnnpack
|
|
} // namespace tflite
|