Since the struct lifetime is bound to the wrapped pointer this is fine. PiperOrigin-RevId: 308941521 Change-Id: I0604fff4fcba6a03cc4a2242ab9f182fbfbf8bae
172 lines
5.9 KiB
C++
172 lines
5.9 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <vector>
|
|
|
|
#include "tensorflow/c/c_api.h"
|
|
#include "tensorflow/c/eager/c_api.h"
|
|
#include "tensorflow/c/eager/tfe_tensor_debug_info_internal.h"
|
|
#include "tensorflow/c/eager/tfe_tensorhandle_internal.h"
|
|
#include "tensorflow/c/tf_status_internal.h"
|
|
#include "tensorflow/core/common_runtime/eager/tensor_handle.h"
|
|
#include "tensorflow/core/platform/status.h"
|
|
#ifdef TENSORFLOW_EAGER_USE_XLA
|
|
#include "tensorflow/compiler/jit/xla_device.h"
|
|
#endif // TENSORFLOW_EAGER_USE_XLA
|
|
|
|
using tensorflow::int64;
|
|
using tensorflow::string;
|
|
|
|
namespace {
|
|
|
|
std::vector<int64> TensorShapeAsVector(const tensorflow::TensorHandle& handle,
|
|
tensorflow::Status* status) {
|
|
std::vector<int64> shape;
|
|
int rank = -1;
|
|
*status = handle.NumDims(&rank);
|
|
if (!status->ok()) {
|
|
return shape;
|
|
}
|
|
shape.reserve(rank);
|
|
for (int i = 0; i < rank; ++i) {
|
|
tensorflow::int64 dim;
|
|
*status = handle.Dim(i, &dim);
|
|
if (!status->ok()) {
|
|
return shape;
|
|
}
|
|
shape.push_back(dim);
|
|
}
|
|
return shape;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
extern "C" {
|
|
|
|
TF_CAPI_EXPORT extern TFE_TensorDebugInfo* TFE_TensorHandleTensorDebugInfo(
|
|
TFE_TensorHandle* h, TF_Status* status) {
|
|
tensorflow::TensorHandle* handle =
|
|
TensorHandleFromInterface(tensorflow::unwrap(h));
|
|
const tensorflow::Tensor* tensor;
|
|
status->status = handle->Tensor(&tensor);
|
|
if (!status->status.ok()) {
|
|
return nullptr;
|
|
}
|
|
|
|
#ifdef TENSORFLOW_EAGER_USE_XLA
|
|
auto* device = absl::get<tensorflow::Device*>(handle->device());
|
|
|
|
// If tensor resides on an XLA device, use XLA device's PaddedShapeFn.
|
|
auto* xla_device = dynamic_cast<tensorflow::XlaDevice*>(device);
|
|
if (xla_device != nullptr) {
|
|
tensorflow::XlaDevice::PaddedShapeFn shape_fn =
|
|
xla_device->metadata().padded_shape_fn();
|
|
xla::Shape padded_shape;
|
|
status->status = shape_fn(*tensor, &padded_shape);
|
|
if (!status->status.ok()) {
|
|
return nullptr;
|
|
}
|
|
if (VLOG_IS_ON(3)) {
|
|
std::vector<int64> shape_to_log =
|
|
TensorShapeAsVector(*handle, &status->status);
|
|
if (!status->status.ok()) {
|
|
// Ignore the status here as we are simply logging.
|
|
status->status = tensorflow::Status::OK();
|
|
} else {
|
|
VLOG(3) << "Fully padded shape of ["
|
|
<< absl::StrJoin(shape_to_log, ", ") << "] is "
|
|
<< padded_shape.DebugString();
|
|
}
|
|
}
|
|
|
|
if (padded_shape.IsTuple()) {
|
|
if (xla::ShapeUtil::TupleElementCount(padded_shape) != 2) {
|
|
// Currently, the only case of XlaTensor containing a tuple shape is to
|
|
// represent 64 bit ints, doubles, and complex numbers (we don't support
|
|
// 64bit complex numbers).
|
|
status->status = tensorflow::errors::InvalidArgument(
|
|
"XlaTensors should only contain tuples of size 2. Shape: ",
|
|
padded_shape.DebugString());
|
|
return nullptr;
|
|
}
|
|
|
|
// shape0 is not a const& because we will assign it to padded_shape below.
|
|
// It is illegal to assign a part of a message to itself.
|
|
xla::Shape shape0 = xla::ShapeUtil::GetTupleElementShape(padded_shape, 0);
|
|
const xla::Shape& shape1 =
|
|
xla::ShapeUtil::GetTupleElementShape(padded_shape, 1);
|
|
if (shape0.IsTuple() || shape1.IsTuple()) {
|
|
status->status = tensorflow::errors::InvalidArgument(
|
|
"XlaTensors should not contain nested tuples. Shape: ",
|
|
padded_shape.DebugString());
|
|
return nullptr;
|
|
}
|
|
if (!xla::ShapeUtil::Equal(shape0, shape1)) {
|
|
status->status = tensorflow::errors::InvalidArgument(
|
|
"Subshapes of XlaTensors should be the same. Shape: ",
|
|
padded_shape.DebugString());
|
|
return nullptr;
|
|
}
|
|
|
|
// Since the only case we handle here are two equal subshapes, we
|
|
// simply return one of them. The caller will interpret it as this
|
|
// shape directly storing the 64bit types. This approximation is good
|
|
// enough for this API's debugging use case.
|
|
padded_shape = shape0;
|
|
}
|
|
|
|
int rank = padded_shape.dimensions_size();
|
|
std::vector<int64> dev_dims;
|
|
dev_dims.reserve(rank);
|
|
if (rank == 1) {
|
|
// Rank 1 tensors might not have padded_shape.layout.minor_to_major set,
|
|
dev_dims.push_back(padded_shape.dimensions(0));
|
|
} else {
|
|
for (int i = rank - 1; i >= 0; --i) {
|
|
int64 dim_index = padded_shape.layout().minor_to_major(i);
|
|
dev_dims.push_back(padded_shape.dimensions(dim_index));
|
|
}
|
|
}
|
|
status->status = tensorflow::Status::OK();
|
|
return new TFE_TensorDebugInfo(dev_dims);
|
|
}
|
|
#endif // TENSORFLOW_EAGER_USE_XLA
|
|
|
|
// If the tensor is not an XLA tensor, the device shape is
|
|
// the same as regular tensor shape.
|
|
std::vector<int64> dev_dims = TensorShapeAsVector(*handle, &status->status);
|
|
if (!status->status.ok()) {
|
|
return nullptr;
|
|
}
|
|
return new TFE_TensorDebugInfo(dev_dims);
|
|
}
|
|
|
|
TF_CAPI_EXPORT extern void TFE_DeleteTensorDebugInfo(
|
|
TFE_TensorDebugInfo* debug_info) {
|
|
delete debug_info;
|
|
}
|
|
|
|
TF_CAPI_EXPORT extern int TFE_TensorDebugInfoOnDeviceNumDims(
|
|
TFE_TensorDebugInfo* debug_info) {
|
|
return debug_info->dev_dims.size();
|
|
}
|
|
|
|
TF_CAPI_EXPORT extern int64_t TFE_TensorDebugInfoOnDeviceDim(
|
|
TFE_TensorDebugInfo* debug_info, int dim_index) {
|
|
return debug_info->dev_dims[dim_index];
|
|
}
|
|
|
|
} // extern "C"
|