66 lines
2.4 KiB
C++
66 lines
2.4 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/tools/optimize/calibration/calibration_reader.h"
|
|
|
|
#include "absl/memory/memory.h"
|
|
|
|
namespace tflite {
|
|
namespace optimize {
|
|
namespace calibration {
|
|
TfLiteStatus CalibrationReader::GetTensorStatsAsMap(
|
|
std::unordered_map<int, CalibrationStats>* tensor_id_to_stats_map) const {
|
|
tensor_id_to_stats_map->clear();
|
|
for (const auto& tensorid_stat : logger_->GetCalibrationValues()) {
|
|
auto minmax = tensorid_stat.second;
|
|
CalibrationReader::CalibrationStats stats;
|
|
TF_LITE_ENSURE_STATUS(minmax.Get(&stats.min, &stats.max));
|
|
tensor_id_to_stats_map->insert({tensorid_stat.first, stats});
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus CalibrationReader::AddCalibrationToModel(ModelT* model,
|
|
bool update) const {
|
|
if (!model || model->subgraphs.empty()) {
|
|
return kTfLiteError;
|
|
}
|
|
const auto& subgraph = model->subgraphs[0];
|
|
for (const auto& tensorid_stat : logger_->GetCalibrationValues()) {
|
|
auto minmax = tensorid_stat.second;
|
|
float min, max;
|
|
TF_LITE_ENSURE_STATUS(minmax.Get(&min, &max));
|
|
if (update) {
|
|
auto tensor = subgraph->tensors[tensorid_stat.first].get();
|
|
if (tensor->quantization) {
|
|
const float existing_min = tensor->quantization->min[0];
|
|
const float existing_max = tensor->quantization->max[0];
|
|
min = min < existing_min ? min : existing_min;
|
|
max = max > existing_max ? max : existing_max;
|
|
}
|
|
}
|
|
auto quant_params = absl::make_unique<tflite::QuantizationParametersT>();
|
|
quant_params->min.push_back(min);
|
|
quant_params->max.push_back(max);
|
|
subgraph->tensors[tensorid_stat.first]->quantization =
|
|
std::move(quant_params);
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace calibration
|
|
} // namespace optimize
|
|
} // namespace tflite
|