STT-tensorflow/tensorflow/lite/testing/tflite_diff_flags.h
Jared Duke 298ec44da3 Add a tflite_model_test build rule
This test runs an automated diff comparison of TF vs TFLite for a given
source model. It can also be used to run comparisons on-device with
delegates.

Also fix the tf_driver/tflite_diff tool to allow execution on mobile devices.

PiperOrigin-RevId: 284293992
Change-Id: Ia64927b4d76a195924e5dc2f16b7f4aa53481c0e
2019-12-06 17:35:14 -08:00

106 lines
4.3 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_TESTING_TFLITE_DIFF_FLAGS_H_
#define TENSORFLOW_LITE_TESTING_TFLITE_DIFF_FLAGS_H_
#include <cstring>
#include "absl/strings/match.h"
#include "tensorflow/core/util/command_line_flags.h"
#include "tensorflow/lite/testing/split.h"
#include "tensorflow/lite/testing/tflite_diff_util.h"
#include "tensorflow/lite/testing/tflite_driver.h"
namespace tflite {
namespace testing {
DiffOptions ParseTfliteDiffFlags(int* argc, char** argv) {
struct {
string tensorflow_model;
string tflite_model;
string input_layer;
string input_layer_type;
string input_layer_shape;
string output_layer;
int32_t num_runs_per_pass = 100;
string delegate_name;
} values;
std::string delegate_name;
std::vector<tensorflow::Flag> flags = {
tensorflow::Flag("tensorflow_model", &values.tensorflow_model,
"Path of tensorflow model."),
tensorflow::Flag("tflite_model", &values.tflite_model,
"Path of tensorflow lite model."),
tensorflow::Flag("input_layer", &values.input_layer,
"Names of input tensors, separated by comma. Example: "
"input_1,input_2."),
tensorflow::Flag("input_layer_type", &values.input_layer_type,
"Data types of input tensors, separated by comma. "
"Example: float,int."),
tensorflow::Flag(
"input_layer_shape", &values.input_layer_shape,
"Shapes of input tensors, separated by colon. Example: 1,3,4,1:2."),
tensorflow::Flag("output_layer", &values.output_layer,
"Names of output tensors, separated by comma. Example: "
"output_1,output_2."),
tensorflow::Flag("num_runs_per_pass", &values.num_runs_per_pass,
"[optional] Number of full runs in each pass."),
tensorflow::Flag("delegate", &values.delegate_name,
"[optional] Delegate to use for executing ops. Must be "
"`{\"\", NNAPI, GPU, FLEX}`"),
};
bool no_inputs = *argc == 1;
bool success = tensorflow::Flags::Parse(argc, argv, flags);
if (!success || no_inputs || (*argc == 2 && !strcmp(argv[1], "--helpfull"))) {
fprintf(stderr, "%s", tensorflow::Flags::Usage(argv[0], flags).c_str());
return {};
} else if (values.tensorflow_model.empty() || values.tflite_model.empty() ||
values.input_layer.empty() || values.input_layer_type.empty() ||
values.input_layer_shape.empty() || values.output_layer.empty()) {
fprintf(stderr, "%s", tensorflow::Flags::Usage(argv[0], flags).c_str());
return {};
}
TfLiteDriver::DelegateType delegate = TfLiteDriver::DelegateType::kNone;
if (!values.delegate_name.empty()) {
if (absl::EqualsIgnoreCase(values.delegate_name, "nnapi")) {
delegate = TfLiteDriver::DelegateType::kNnapi;
} else if (absl::EqualsIgnoreCase(values.delegate_name, "gpu")) {
delegate = TfLiteDriver::DelegateType::kGpu;
} else if (absl::EqualsIgnoreCase(values.delegate_name, "flex")) {
delegate = TfLiteDriver::DelegateType::kFlex;
} else {
fprintf(stderr, "%s", tensorflow::Flags::Usage(argv[0], flags).c_str());
return {};
}
}
return {values.tensorflow_model,
values.tflite_model,
Split<string>(values.input_layer, ","),
Split<string>(values.input_layer_type, ","),
Split<string>(values.input_layer_shape, ":"),
Split<string>(values.output_layer, ","),
values.num_runs_per_pass,
delegate};
}
} // namespace testing
} // namespace tflite
#endif // TENSORFLOW_LITE_TESTING_TFLITE_DIFF_FLAGS_H_