TensorFlower Gardener 3d868aa1c6 Merge pull request #36251 from wwwind:interface_16x8
PiperOrigin-RevId: 317232781
2020-06-18 19:47:52 -07:00

186 lines
7.2 KiB
Python

# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Calibrator."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from six.moves import range
from tensorflow.lite.python import lite_constants as constants
from tensorflow.lite.python.optimize import calibrator as _calibrator
from tensorflow.python.framework import test_util
from tensorflow.python.platform import resource_loader
from tensorflow.python.platform import test
class CalibratorTest(test_util.TensorFlowTestCase, parameterized.TestCase):
@parameterized.named_parameters(
# Activation type Int8
('UseActivationTypeInt8', constants.INT8),
# Activation type Int16
('UseActivationTypeInt16', constants.INT16))
def test_calibration_with_quantization(self, activations_type):
model_path = resource_loader.get_path_to_datafile(
'test_data/mobilenet_like_model.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
# Input generator for the model.
def input_gen():
for _ in range(10):
yield [np.ones(shape=(1, 5, 5, 3), dtype=np.float32)]
quantized_model = quantizer.calibrate_and_quantize(input_gen,
constants.FLOAT,
constants.FLOAT, False,
activations_type)
self.assertIsNotNone(quantized_model)
@parameterized.named_parameters(
# Activation type Int8
('UseActivationTypeInt8', constants.INT8),
# Activation type Int16
('UseActivationTypeInt16', constants.INT16))
def test_calibration_with_quantization_allow_float(self, activations_type):
model_path = resource_loader.get_path_to_datafile(
'test_data/mobilenet_like_model.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
# Input generator for the model.
def input_gen():
for _ in range(10):
yield [np.ones(shape=(1, 5, 5, 3), dtype=np.float32)]
quantized_model = quantizer.calibrate_and_quantize(input_gen,
constants.FLOAT,
constants.FLOAT, True,
activations_type)
self.assertIsNotNone(quantized_model)
def test_calibration_with_quantization_single_op(self):
model_path = resource_loader.get_path_to_datafile(
'test_data/mobilenet_like_model.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
# Input generator for the model.
def input_gen():
for _ in range(10):
yield [np.ones(shape=(1, 5, 5, 3), dtype=np.float32)]
quantized_model = quantizer.calibrate_and_quantize_single(
input_gen, constants.FLOAT, constants.FLOAT, True, 'conv2d_8/BiasAdd')
self.assertIsNotNone(quantized_model)
@parameterized.named_parameters(
# Activation type Int8
('UseActivationTypeInt8 - EnableMlirQuantizer', constants.INT8),
# Activation type Int16
('UseActivationTypeInt16 - DisableEnableMlirQuantizer', constants.INT16))
def test_calibration_with_quantization_multiple_inputs(
self, activations_type):
# Load multi add model from test data.
# This model has 4 inputs of size (1, 8, 8, 3).
model_path = resource_loader.get_path_to_datafile(
'../../testdata/multi_add.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
# Input generator for the model.
def input_gen():
for _ in range(10):
yield [np.ones(shape=(1, 8, 8, 3), dtype=np.float32) for _ in range(4)]
quantized_model = quantizer.calibrate_and_quantize(input_gen,
constants.FLOAT,
constants.FLOAT, False,
activations_type)
self.assertIsNotNone(quantized_model)
def test_invalid_model_buffer(self):
float_model = b'\0' * 100
with self.assertRaisesRegex(ValueError, 'Failed to parse the model'):
_calibrator.Calibrator(float_model)
# TODO(fengliuai): enable mlir quantizer
def test_empty_calibrator_gen(self):
model_path = resource_loader.get_path_to_datafile(
'test_data/mobilenet_like_model.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
def empty_input_gen():
for i in ():
yield i
with self.assertRaises(RuntimeError):
quantizer.calibrate_and_quantize(empty_input_gen, constants.FLOAT,
constants.FLOAT, False)
def test_invalid_shape_calibrator_gen(self):
model_path = resource_loader.get_path_to_datafile(
'test_data/mobilenet_like_model.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
# Input generator with incorrect shape.
def input_gen():
for _ in range(10):
yield [np.ones(shape=(1, 2, 2, 3), dtype=np.float32)]
with self.assertRaisesRegex(ValueError, 'Size mismatch'):
quantizer.calibrate_and_quantize(input_gen, constants.FLOAT,
constants.FLOAT, False, constants.INT8,
False)
def test_invalid_type_calibrator_gen(self):
model_path = resource_loader.get_path_to_datafile(
'test_data/mobilenet_like_model.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
# Input generator with incorrect type.
def input_gen():
for _ in range(10):
yield [np.ones(shape=(1, 5, 5, 3), dtype=np.int32)]
with self.assertRaises(ValueError):
quantizer.calibrate_and_quantize(input_gen, constants.FLOAT,
constants.FLOAT, False, constants.INT8)
def test_calibration(self):
model_path = resource_loader.get_path_to_datafile(
'test_data/mobilenet_like_model.bin')
float_model = open(model_path, 'rb').read()
quantizer = _calibrator.Calibrator(float_model)
# Input generator for the model.
def input_gen():
for _ in range(10):
yield [np.ones(shape=(1, 5, 5, 3), dtype=np.float32)]
quantized_model = quantizer.calibrate(input_gen)
self.assertIsNotNone(quantized_model)
if __name__ == '__main__':
test.main()