368 lines
14 KiB
Python
368 lines
14 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for stateful random-number generation ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import itertools
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.client import device_lib
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.kernel_tests.random import util as \
|
|
random_test_util
|
|
from tensorflow.python.ops import gen_stateful_random_ops
|
|
from tensorflow.python.ops import stateful_random_ops as \
|
|
random
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def xla_device():
|
|
devices = device_lib.list_local_devices()
|
|
def find_type(device_type):
|
|
for d in devices:
|
|
if d.device_type == device_type:
|
|
return d
|
|
return None
|
|
d = find_type("TPU") or find_type("XLA_GPU") or find_type("XLA_CPU")
|
|
if d is None:
|
|
raise ValueError(
|
|
"Can't find any XLA device. Available devices:\n%s" % devices)
|
|
return d
|
|
|
|
|
|
def xla_device_name():
|
|
return str(xla_device().name)
|
|
|
|
|
|
ALGS = [random.RNG_ALG_PHILOX, random.RNG_ALG_THREEFRY]
|
|
INTS = [dtypes.int32, dtypes.uint32, dtypes.int64, dtypes.uint64]
|
|
FLOATS = [dtypes.bfloat16, dtypes.float32, dtypes.float64]
|
|
|
|
|
|
class StatefulRandomOpsTest(xla_test.XLATestCase, parameterized.TestCase):
|
|
"""Test cases for stateful random-number generator operators."""
|
|
|
|
@parameterized.parameters(ALGS)
|
|
def testSimple(self, alg):
|
|
"""A simple test."""
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=0, alg=alg)
|
|
gen.normal(shape=(3,))
|
|
gen.uniform(shape=(3,), minval=0, maxval=10, dtype=dtypes.uint32)
|
|
gen.uniform_full_int(shape=(3,))
|
|
|
|
@parameterized.parameters(ALGS)
|
|
def testDefun(self, alg):
|
|
"""Test for defun."""
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=0, alg=alg)
|
|
@def_function.function
|
|
def f():
|
|
x = gen.normal(shape=(3,))
|
|
y = gen.uniform(shape=(3,), minval=0, maxval=10, dtype=dtypes.uint32)
|
|
z = gen.uniform_full_int(shape=(3,))
|
|
return (x, y, z)
|
|
f()
|
|
|
|
def _compareToKnownOutputs(self, g, counter, key, expect):
|
|
"""Compares against known outputs for specific counter and key inputs."""
|
|
def uint32s_to_uint64(a, b):
|
|
return b << 32 | a
|
|
|
|
def uint32s_to_uint64s(ls):
|
|
return [uint32s_to_uint64(ls[2 * i], ls[2 * i + 1])
|
|
for i in range(len(ls) // 2)]
|
|
|
|
ctr_len = len(counter)
|
|
counter = uint32s_to_uint64s(counter)
|
|
key = uint32s_to_uint64s(key)
|
|
state = counter + key
|
|
g.reset(state)
|
|
got = g.uniform_full_int(shape=(ctr_len,), dtype=dtypes.uint32)
|
|
self.assertAllEqual(expect, got)
|
|
g.reset(state)
|
|
got = g.uniform_full_int(shape=(ctr_len // 2,), dtype=dtypes.uint64)
|
|
self.assertAllEqual(uint32s_to_uint64s(expect), got)
|
|
|
|
def testThreefry2x32(self):
|
|
"""Tests ThreeFry2x32 conforms to known results.
|
|
"""
|
|
# Based on
|
|
# https://github.com/google/jax/blob/8565a3486adf16beb388b2364c9cd930d7a0d92d/tests/random_test.py#L65-L85
|
|
# which is in turn based on
|
|
# https://github.com/DEShawResearch/Random123-Boost/blob/65e3d874b67aa7b3e02d5ad8306462f52d2079c0/libs/random/test/test_threefry.cpp#L30-L32
|
|
|
|
with ops.device(xla_device_name()):
|
|
g = random.Generator.from_seed(seed=0, alg=random.RNG_ALG_THREEFRY)
|
|
self._compareToKnownOutputs(
|
|
g,
|
|
[0x00000000, 0x00000000], [0x00000000, 0x00000000],
|
|
[0x6b200159, 0x99ba4efe])
|
|
self._compareToKnownOutputs(
|
|
g,
|
|
[0xffffffff, 0xffffffff], [0xffffffff, 0xffffffff],
|
|
[0x1cb996fc, 0xbb002be7])
|
|
self._compareToKnownOutputs(
|
|
g,
|
|
[0x243f6a88, 0x85a308d3], [0x13198a2e, 0x03707344],
|
|
[0xc4923a9c, 0x483df7a0])
|
|
|
|
def testPhilox4x32(self):
|
|
"""Tests Philox4x32 conforms to known results.
|
|
"""
|
|
# Based on
|
|
# https://github.com/DEShawResearch/Random123-Boost/blob/65e3d874b67aa7b3e02d5ad8306462f52d2079c0/libs/random/test/test_philox.cpp#L50-L52
|
|
|
|
with ops.device(xla_device_name()):
|
|
g = random.Generator.from_seed(seed=0, alg=random.RNG_ALG_PHILOX)
|
|
self._compareToKnownOutputs(
|
|
g,
|
|
[0x00000000, 0x00000000, 0x00000000, 0x00000000],
|
|
[0x00000000, 0x00000000],
|
|
[0x6627e8d5, 0xe169c58d, 0xbc57ac4c, 0x9b00dbd8])
|
|
self._compareToKnownOutputs(
|
|
g,
|
|
[0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff],
|
|
[0xffffffff, 0xffffffff],
|
|
[0x408f276d, 0x41c83b0e, 0xa20bc7c6, 0x6d5451fd])
|
|
self._compareToKnownOutputs(
|
|
g,
|
|
[0x243f6a88, 0x85a308d3, 0x13198a2e, 0x03707344],
|
|
[0xa4093822, 0x299f31d0],
|
|
[0xd16cfe09, 0x94fdcceb, 0x5001e420, 0x24126ea1])
|
|
|
|
def testNewStateThreeFry(self):
|
|
"""Tests that the new state is correct (for ThreeFry).
|
|
"""
|
|
with ops.device(xla_device_name()):
|
|
counter = 57
|
|
key = 0x1234
|
|
size = 46
|
|
state = [counter, key]
|
|
gen = random.Generator(state=state, alg=random.RNG_ALG_THREEFRY)
|
|
gen.uniform_full_int(shape=(size,), dtype=dtypes.uint32)
|
|
self.assertAllEqual([counter+(size+1)//2, key], gen.state.read_value())
|
|
gen.reset(state)
|
|
gen.uniform_full_int(shape=(size,), dtype=dtypes.uint64)
|
|
self.assertAllEqual([counter+size, key], gen.state.read_value())
|
|
|
|
def testNewStatePhilox(self):
|
|
"""Tests that the new state is correct (for Philox).
|
|
"""
|
|
with ops.device(xla_device_name()):
|
|
counter_low = 57
|
|
counter_high = 283
|
|
key = 0x1234
|
|
size = 47
|
|
state = [counter_low, counter_high, key]
|
|
gen = random.Generator(state=state, alg=random.RNG_ALG_PHILOX)
|
|
gen.uniform_full_int(shape=(size,), dtype=dtypes.uint32)
|
|
self.assertAllEqual([counter_low+(size+3)//4, counter_high, key],
|
|
gen.state.read_value())
|
|
gen.reset(state)
|
|
gen.uniform_full_int(shape=(size,), dtype=dtypes.uint64)
|
|
self.assertAllEqual([counter_low+(size+1)//2, counter_high, key],
|
|
gen.state.read_value())
|
|
# Tests that large counter_low will correctly overflows to counter_high
|
|
counter_low = -1 # same as 0xffffffffffffffff
|
|
counter_high = 283
|
|
size = 47
|
|
state = [counter_low, counter_high, key]
|
|
gen = random.Generator(state=state, alg=random.RNG_ALG_PHILOX)
|
|
gen.uniform_full_int(shape=(size,), dtype=dtypes.uint32)
|
|
self.assertAllEqual([(size+3)//4-1, counter_high+1, key],
|
|
gen.state.read_value())
|
|
gen.reset(state)
|
|
gen.uniform_full_int(shape=(size,), dtype=dtypes.uint64)
|
|
self.assertAllEqual([(size+1)//2-1, counter_high+1, key],
|
|
gen.state.read_value())
|
|
|
|
@parameterized.parameters(INTS)
|
|
def testXLAEqualsCPU(self, dtype):
|
|
"""Tests that XLA and CPU kernels generate the same integers."""
|
|
seed = 1234
|
|
shape = [315, 49]
|
|
with ops.device("/device:CPU:0"):
|
|
cpu = (random.Generator.from_seed(seed=seed, alg=random.RNG_ALG_PHILOX)
|
|
.uniform_full_int(shape=shape, dtype=dtype))
|
|
with ops.device(xla_device_name()):
|
|
xla = (random.Generator.from_seed(seed=seed, alg=random.RNG_ALG_PHILOX)
|
|
.uniform_full_int(shape=shape, dtype=dtype))
|
|
self.assertAllEqual(cpu, xla)
|
|
|
|
def _testRngIsNotConstant(self, rng, dtype):
|
|
# Tests that 'rng' does not always return the same value.
|
|
# The random-number generator, if working correctly, should produce the
|
|
# same output multiple times with low probability.
|
|
x = rng(dtype).numpy()
|
|
y = rng(dtype).numpy()
|
|
self.assertFalse(np.array_equal(x, y))
|
|
|
|
def check_dtype(self, dtype):
|
|
device = xla_device()
|
|
if device.device_type == "TPU" and dtype == dtypes.float64:
|
|
self.skipTest("TPU doesn't support float64.")
|
|
|
|
@parameterized.parameters(list(itertools.product(ALGS, INTS + FLOATS)))
|
|
def testUniformIsNotConstant(self, alg, dtype):
|
|
self.check_dtype(dtype)
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=1234, alg=alg)
|
|
def rng(dtype):
|
|
maxval = dtype.max
|
|
return gen.uniform(shape=[2], dtype=dtype, maxval=maxval)
|
|
|
|
self._testRngIsNotConstant(rng, dtype)
|
|
|
|
@parameterized.parameters(list(itertools.product(ALGS, FLOATS)))
|
|
def testNormalIsNotConstant(self, alg, dtype):
|
|
self.check_dtype(dtype)
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=1234, alg=alg)
|
|
def rng(dtype):
|
|
return gen.normal(shape=[2], dtype=dtype)
|
|
|
|
self._testRngIsNotConstant(rng, dtype)
|
|
|
|
@parameterized.parameters(list(itertools.product(ALGS, INTS + FLOATS)))
|
|
def testUniformIsInRange(self, alg, dtype):
|
|
self.check_dtype(dtype)
|
|
minval = 2
|
|
maxval = 33
|
|
size = 1000
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=1234, alg=alg)
|
|
x = gen.uniform(
|
|
shape=[size], dtype=dtype, minval=minval, maxval=maxval).numpy()
|
|
self.assertTrue(np.all(x >= minval))
|
|
self.assertTrue(np.all(x <= maxval))
|
|
|
|
@parameterized.parameters(list(itertools.product(ALGS, FLOATS)))
|
|
def testNormalIsFinite(self, alg, dtype):
|
|
self.check_dtype(dtype)
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=1234, alg=alg)
|
|
x = gen.normal(shape=[10000], dtype=dtype).numpy()
|
|
self.assertTrue(np.all(np.isfinite(x)))
|
|
|
|
@parameterized.parameters(list(itertools.product(ALGS, INTS + FLOATS)))
|
|
def testDistributionOfUniform(self, alg, dtype):
|
|
"""Use Pearson's Chi-squared test to test for uniformity."""
|
|
self.check_dtype(dtype)
|
|
with ops.device(xla_device_name()):
|
|
n = 1000
|
|
seed = 12
|
|
gen = random.Generator.from_seed(seed=seed, alg=alg)
|
|
maxval = 1
|
|
if dtype.is_integer:
|
|
maxval = 100
|
|
t = gen.uniform(shape=[n], maxval=maxval, dtype=dtype)
|
|
x = t.numpy().astype(float)
|
|
if maxval > 1:
|
|
# Normalize y to range [0, 1).
|
|
x = x / maxval
|
|
# Tests that the values are distributed amongst 10 bins with equal
|
|
# probability. 16.92 is the Chi^2 value for 9 degrees of freedom with
|
|
# p=0.05. This test is probabilistic and would be flaky if the random
|
|
# seed were not fixed.
|
|
val = random_test_util.chi_squared(x, 10)
|
|
self.assertLess(val, 16.92)
|
|
|
|
@parameterized.parameters(list(itertools.product(ALGS, FLOATS)))
|
|
def testDistributionOfNormal(self, alg, dtype):
|
|
"""Use Anderson-Darling test to test distribution appears normal."""
|
|
self.check_dtype(dtype)
|
|
with ops.device(xla_device_name()):
|
|
n = 1000
|
|
gen = random.Generator.from_seed(seed=1234, alg=alg)
|
|
x = gen.normal(shape=[n], dtype=dtype).numpy()
|
|
# The constant 2.492 is the 5% critical value for the Anderson-Darling
|
|
# test where the mean and variance are known. This test is probabilistic
|
|
# so to avoid flakiness the seed is fixed.
|
|
self.assertLess(
|
|
random_test_util.anderson_darling(x.astype(float)), 2.492)
|
|
|
|
@parameterized.parameters(list(itertools.product(ALGS, FLOATS)))
|
|
def testTruncatedNormal(self, alg, dtype):
|
|
self.check_dtype(dtype)
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=123, alg=alg)
|
|
n = 100000
|
|
y = gen.truncated_normal(shape=[n], dtype=dtype).numpy()
|
|
random_test_util.test_truncated_normal(
|
|
self.assertEqual, self.assertAllClose, n, y,
|
|
mean_atol=2e-3, median_atol=4e-3,
|
|
variance_rtol=1e-2 if dtype == dtypes.bfloat16 else 5e-3)
|
|
|
|
def testErrors(self):
|
|
"""Tests that proper errors are raised.
|
|
"""
|
|
shape = [2, 3]
|
|
with ops.device(xla_device_name()):
|
|
gen = random.Generator.from_seed(seed=1234, alg=random.RNG_ALG_THREEFRY)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
r"algorithm must be of shape \[\], not"):
|
|
gen_stateful_random_ops.stateful_standard_normal_v2(
|
|
gen.state.handle, [0, 0], shape)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
TypeError, "EagerTensor of dtype int64"):
|
|
gen_stateful_random_ops.stateful_standard_normal_v2(
|
|
gen.state.handle, 1.1, shape)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
"Unsupported algorithm id"):
|
|
gen_stateful_random_ops.stateful_standard_normal_v2(
|
|
gen.state.handle, 123, shape)
|
|
var = variables.Variable([0, 0], dtype=dtypes.uint32)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
"Type mismatch for read of variable .* Expected int64; got"):
|
|
gen_stateful_random_ops.stateful_standard_normal_v2(
|
|
var.handle, random.RNG_ALG_THREEFRY, shape)
|
|
var = variables.Variable([[0]], dtype=dtypes.int64)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
"RNG state must have one and only one dimension, not"):
|
|
gen_stateful_random_ops.stateful_standard_normal_v2(
|
|
var.handle, random.RNG_ALG_THREEFRY, shape)
|
|
var = variables.Variable([0], dtype=dtypes.int64)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
"The size of the state must be at least"):
|
|
gen_stateful_random_ops.stateful_standard_normal_v2(
|
|
var.handle, random.RNG_ALG_THREEFRY, shape)
|
|
var = variables.Variable([0, 0], dtype=dtypes.int64)
|
|
with self.assertRaisesWithPredicateMatch(
|
|
errors_impl.InvalidArgumentError,
|
|
"The size of the state must be at least"):
|
|
gen_stateful_random_ops.stateful_standard_normal_v2(
|
|
var.handle, random.RNG_ALG_PHILOX, shape)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ops.enable_eager_execution()
|
|
test.main()
|