A. Unique TensorFlower 9f7f6e9faa allow profiler_client.py v2 (our rpc client) to provide ProfilerOptions,
v1/eager profiler_client.py will use default options.
add device_tracer_level to ProfilerOptions and allow default values (no need to specify all options and in specific order)

PiperOrigin-RevId: 306308283
Change-Id: Ia9a6a7cfde37142be79e314627b9d63993b6283c
2020-04-13 14:24:44 -07:00

208 lines
6.8 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TensorFlow 2.x Profiler.
The profiler has two modes:
- Programmatic Mode: start(logdir), stop(), and Profiler class. Profiling starts
when calling start(logdir) or create a Profiler class.
Profiling stops when calling stop() to save to
TensorBoard logdir or destroying the Profiler class.
- Sampling Mode: start_server(). It will perform profiling after receiving a
profiling request.
NOTE: Only one active profiler session is allowed. Use of simultaneous
Programmatic Mode and Sampling Mode is undefined and will likely fail.
NOTE: The Keras TensorBoard callback will automatically perform sampled
profiling. Before enabling customized profiling, set the callback flag
"profile_batches=[]" to disable automatic sampled profiling.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import threading
from tensorflow.python.framework import errors
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.profiler.internal import _pywrap_profiler
from tensorflow.python.util.tf_export import tf_export
_profiler = None
_profiler_lock = threading.Lock()
@tf_export('profiler.experimental.ProfilerOptions', v1=[])
class ProfilerOptions(
collections.namedtuple(
'ProfilerOptions',
['host_tracer_level', 'python_tracer_level', 'device_tracer_level'])):
"""Options to control profiler behaviors.
A `tf.profiler.ProfilerOptions` hold the knobs to control tf.profiler's
behavior.
Fields:
host_tracer_level: for adjust TraceMe levels. i.e. 1 => critical,
2 => info, 3 => verbose. [default to 2]
python_tracer_level: for enable python function call tracing, 1 => enable.
0 => disable [default to 0]
device_tracer_level: for adjust device (TPU/GPU) tracer level, 0 => disable
1 => enabled. We may introduce fine-tuned level in the
future. [default to 1]
"""
def __new__(cls,
host_tracer_level=2,
python_tracer_level=0,
device_tracer_level=1):
return super(ProfilerOptions,
cls).__new__(cls, host_tracer_level, python_tracer_level,
device_tracer_level)
@tf_export('profiler.experimental.start', v1=[])
def start(logdir, options=None):
"""Starts profiling.
Args:
logdir: A log directory read by TensorBoard to export the profile results.
options: namedtuple of ProfilerOptions for miscellaneous profiler options.
Raises:
AlreadyExistsError: If another profiling session is running.
Example usage:
```python
tf.profiler.experimental.start(
'logdir_path', tf.profiler.ProfilerOptions(host_tracer_level=2))
# do your training here.
tf.profiler.experimental.stop()
```
Launch TensorBoard and point it to the same logdir you provided to this API.
$ tensorboard --logdir=logdir_path
Open your browser and go to localhost:6006/#profile to view profiling results.
"""
global _profiler
with _profiler_lock:
if _profiler is not None:
raise errors.AlreadyExistsError(None, None,
'Another profiler is running.')
_profiler = _pywrap_profiler.ProfilerSession()
try:
# support for namedtuple in pybind11 is missing, we change it to
# dict type first.
opts = dict(options._asdict()) if options is not None else {}
_profiler.start(logdir, opts)
except errors.AlreadyExistsError:
logging.warning('Another profiler session is running which is probably '
'created by profiler server. Please avoid using profiler '
'server and profiler APIs at the same time.')
raise errors.AlreadyExistsError(None, None,
'Another profiler is running.')
except Exception:
_profiler = None
raise
@tf_export('profiler.experimental.stop', v1=[])
def stop(save=True):
"""Stops the current profiling session.
The profiler session will be stopped and profile results can be saved.
Args:
save: An optional variable to save the results to TensorBoard. Default True.
Raises:
UnavailableError: If there is no active profiling session.
"""
global _profiler
with _profiler_lock:
if _profiler is None:
raise errors.UnavailableError(
None, None,
'Cannot export profiling results. No profiler is running.')
if save:
try:
_profiler.export_to_tb()
except Exception:
_profiler = None
raise
_profiler = None
def warmup():
"""Warm-up the profiler session.
The profiler session will set up profiling context, including loading CUPTI
library for GPU profiling. This is used for improving the accuracy of
the profiling results.
"""
start('')
stop(save=False)
@tf_export('profiler.experimental.server.start', v1=[])
def start_server(port):
"""Start a profiler grpc server that listens to given port.
The profiler server will exit when the process finishes. The service is
defined in tensorflow/core/profiler/profiler_service.proto.
Args:
port: port profiler server listens to.
Example usage: ```python tf.profiler.experimental.server.start('6009') # do
your training here.
"""
_pywrap_profiler.start_server(port)
@tf_export('profiler.experimental.Profile', v1=[])
class Profile(object):
"""Context-manager profile API.
Profiling will start when entering the scope, and stop and save the results to
the logdir when exits the scope. Open TensorBoard profile tab to view results.
Example usage:
```python
with tf.profiler.experimental.Profile("/path/to/logdir"):
# do some work
```
"""
def __init__(self, logdir, options=None):
"""Creates a context manager object for profiler API.
Args:
logdir: profile data will save to this directory.
options: An optional tf.profiler.ProfilerOptions can be provided to fine
tune the profiler's behavior.
"""
self._logdir = logdir
self._options = options
def __enter__(self):
start(self._logdir, self._options)
def __exit__(self, typ, value, tb):
stop()