Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

79 lines
3.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for identity."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
from tensorflow.python.ops import array_ops
@register_make_test_function()
def make_identity_tests(options):
"""Make a set of tests to do identity."""
# Chose a set of parameters
test_parameters = [{
"input_shape": [[], [1], [3, 3]],
"op_to_use": [
"identity", "identity_n", "snapshot", "identity_n_with_2_inputs"
],
}]
def build_graph(parameters):
"""Make a set of tests to do identity."""
input_tensors = []
input_count = (2 if parameters["op_to_use"] == "identity_n_with_2_inputs"
else 1)
input_tensors = [
tf.compat.v1.placeholder(
dtype=tf.float32, name="input", shape=parameters["input_shape"])
for _ in range(input_count)
]
# We add the Multiply before Identity just as a walk-around to make the test
# pass when input_shape is scalar.
# During graph transformation, TOCO will replace the Identity op with
# Reshape when input has shape. However, currently TOCO can't distinguish
# between missing shape and scalar shape. As a result, when input has scalar
# shape, this conversion still fails.
# TODO(b/129197312), remove the walk-around code once the bug is fixed.
inputs_doubled = [input_tensor * 2.0 for input_tensor in input_tensors]
if parameters["op_to_use"] == "identity":
identity_outputs = [tf.identity(inputs_doubled[0])]
elif parameters["op_to_use"] == "snapshot":
identity_outputs = [array_ops.snapshot(inputs_doubled[0])]
elif parameters["op_to_use"] in ("identity_n", "identity_n_with_2_inputs"):
identity_outputs = tf.identity_n(inputs_doubled)
return input_tensors, identity_outputs
def build_inputs(parameters, sess, inputs, outputs):
input_values = [
create_tensor_data(
np.float32, parameters["input_shape"], min_value=-4, max_value=10)
for _ in range(len(inputs))
]
return input_values, sess.run(
outputs, feed_dict=dict(zip(inputs, input_values)))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)