Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

84 lines
3.0 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for conv2d_transpose."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_conv2d_transpose_tests(options):
"""Make a set of tests to do transpose_conv."""
test_parameters = [{
"input_shape": [[1, 50, 54, 3]],
"filter_shape": [[1, 1, 8, 3], [1, 2, 8, 3], [1, 3, 8, 3], [1, 4, 8, 3]],
"output_shape": [[1, 100, 108, 8]],
"dynamic_output_shape": [True, False],
}, {
"input_shape": [[1, 16, 1, 512]],
"filter_shape": [[4, 1, 512, 512]],
"output_shape": [[1, 32, 1, 512]],
"dynamic_output_shape": [True, False],
}, {
"input_shape": [[1, 128, 128, 1]],
"filter_shape": [[4, 4, 1, 1]],
"output_shape": [[1, 256, 256, 1]],
"dynamic_output_shape": [True, False],
}]
def build_graph(parameters):
"""Build a transpose_conv graph given `parameters`."""
input_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, name="input", shape=parameters["input_shape"])
filter_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, name="filter", shape=parameters["filter_shape"])
input_tensors = [input_tensor, filter_tensor]
if parameters["dynamic_output_shape"]:
output_shape = tf.compat.v1.placeholder(dtype=tf.int32, shape=[4])
input_tensors.append(output_shape)
else:
output_shape = parameters["output_shape"]
out = tf.nn.conv2d_transpose(
input_tensor,
filter_tensor,
output_shape=output_shape,
padding="SAME",
strides=(1, 2, 2, 1))
return input_tensors, [out]
def build_inputs(parameters, sess, inputs, outputs):
values = [
create_tensor_data(np.float32, parameters["input_shape"]),
create_tensor_data(np.float32, parameters["filter_shape"])
]
if parameters["dynamic_output_shape"]:
values.append(np.array(parameters["output_shape"]))
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)