2. An initial introduction of InterpreterDetailedStatus to detail the error code that a TFLite interpreter may have during runtime. 3. Apply the above two to instrument the overall invoke latency and status as an initial exemplar usage. PiperOrigin-RevId: 313573701 Change-Id: I8c4189c72066d7d6f4c91014ef4f30e32635c115
47 lines
1.5 KiB
C++
47 lines
1.5 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_LITE_PROFILING_NOOP_PROFILER_H_
|
|
#define TENSORFLOW_LITE_PROFILING_NOOP_PROFILER_H_
|
|
|
|
#include <vector>
|
|
|
|
#include "tensorflow/lite/core/api/profiler.h"
|
|
#include "tensorflow/lite/profiling/profile_buffer.h"
|
|
|
|
namespace tflite {
|
|
namespace profiling {
|
|
|
|
// A noop version of profiler when profiling is disabled.
|
|
class NoopProfiler : public tflite::Profiler {
|
|
public:
|
|
NoopProfiler() {}
|
|
explicit NoopProfiler(int max_profiling_buffer_entries) {}
|
|
|
|
uint32_t BeginEvent(const char*, EventType, int64_t, int64_t) override {
|
|
return 0;
|
|
}
|
|
void EndEvent(uint32_t) override {}
|
|
|
|
void StartProfiling() {}
|
|
void StopProfiling() {}
|
|
void Reset() {}
|
|
std::vector<const ProfileEvent*> GetProfileEvents() { return {}; }
|
|
};
|
|
|
|
} // namespace profiling
|
|
} // namespace tflite
|
|
|
|
#endif // TENSORFLOW_LITE_PROFILING_NOOP_PROFILER_H_
|