616 lines
21 KiB
Python
616 lines
21 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""TensorFlow Lite metadata tools."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import warnings
|
|
import zipfile
|
|
|
|
from flatbuffers.python import flatbuffers
|
|
from tensorflow.lite.experimental.support.metadata import metadata_schema_py_generated as _metadata_fb
|
|
from tensorflow.lite.experimental.support.metadata import schema_py_generated as _schema_fb
|
|
from tensorflow.lite.experimental.support.metadata.cc.python import _pywrap_metadata_version
|
|
from tensorflow.lite.experimental.support.metadata.flatbuffers_lib import _pywrap_flatbuffers
|
|
from tensorflow.python.platform import resource_loader
|
|
|
|
_FLATC_TFLITE_METADATA_SCHEMA_FILE = resource_loader.get_path_to_datafile(
|
|
"metadata_schema.fbs")
|
|
|
|
|
|
# TODO(b/141467403): add delete method for associated files.
|
|
class MetadataPopulator(object):
|
|
"""Packs metadata and associated files into TensorFlow Lite model file.
|
|
|
|
MetadataPopulator can be used to populate metadata and model associated files
|
|
into a model file or a model buffer (in bytearray). It can also help to
|
|
inspect list of files that have been packed into the model or are supposed to
|
|
be packed into the model.
|
|
|
|
The metadata file (or buffer) should be generated based on the metadata
|
|
schema:
|
|
third_party/tensorflow/lite/schema/metadata_schema.fbs
|
|
|
|
Example usage:
|
|
Populate matadata and label file into an image classifier model.
|
|
|
|
First, based on metadata_schema.fbs, generate the metadata for this image
|
|
classifer model using Flatbuffers API. Attach the label file onto the ouput
|
|
tensor (the tensor of probabilities) in the metadata.
|
|
|
|
Then, pack the metadata and label file into the model as follows.
|
|
|
|
```python
|
|
# Populating a metadata file (or a metadta buffer) and associated files to
|
|
a model file:
|
|
populator = MetadataPopulator.with_model_file(model_file)
|
|
# For metadata buffer (bytearray read from the metadata file), use:
|
|
# populator.load_metadata_buffer(metadata_buf)
|
|
populator.load_metadata_file(metadata_file)
|
|
populator.load_associated_files([label.txt])
|
|
populator.populate()
|
|
|
|
# Populating a metadata file (or a metadta buffer) and associated files to
|
|
a model buffer:
|
|
populator = MetadataPopulator.with_model_buffer(model_buf)
|
|
populator.load_metadata_file(metadata_file)
|
|
populator.load_associated_files([label.txt])
|
|
populator.populate()
|
|
# Writing the updated model buffer into a file.
|
|
updated_model_buf = populator.get_model_buffer()
|
|
with open("updated_model.tflite", "wb") as f:
|
|
f.write(updated_model_buf)
|
|
```
|
|
|
|
Note that existing metadata buffer (if applied) will be overridden by the new
|
|
metadata buffer.
|
|
"""
|
|
# As Zip API is used to concatenate associated files after tflite model file,
|
|
# the populating operation is developed based on a model file. For in-memory
|
|
# model buffer, we create a tempfile to serve the populating operation.
|
|
# Creating the deleting such a tempfile is handled by the class,
|
|
# _MetadataPopulatorWithBuffer.
|
|
|
|
METADATA_FIELD_NAME = "TFLITE_METADATA"
|
|
TFLITE_FILE_IDENTIFIER = b"TFL3"
|
|
METADATA_FILE_IDENTIFIER = b"M001"
|
|
|
|
def __init__(self, model_file):
|
|
"""Constructor for MetadataPopulator.
|
|
|
|
Args:
|
|
model_file: valid path to a TensorFlow Lite model file.
|
|
|
|
Raises:
|
|
IOError: File not found.
|
|
ValueError: the model does not have the expected flatbuffer identifer.
|
|
"""
|
|
_assert_model_file_identifier(model_file)
|
|
self._model_file = model_file
|
|
self._metadata_buf = None
|
|
self._associated_files = set()
|
|
|
|
@classmethod
|
|
def with_model_file(cls, model_file):
|
|
"""Creates a MetadataPopulator object that populates data to a model file.
|
|
|
|
Args:
|
|
model_file: valid path to a TensorFlow Lite model file.
|
|
|
|
Returns:
|
|
MetadataPopulator object.
|
|
|
|
Raises:
|
|
IOError: File not found.
|
|
ValueError: the model does not have the expected flatbuffer identifer.
|
|
"""
|
|
return cls(model_file)
|
|
|
|
# TODO(b/141468993): investigate if type check can be applied to model_buf for
|
|
# FB.
|
|
@classmethod
|
|
def with_model_buffer(cls, model_buf):
|
|
"""Creates a MetadataPopulator object that populates data to a model buffer.
|
|
|
|
Args:
|
|
model_buf: TensorFlow Lite model buffer in bytearray.
|
|
|
|
Returns:
|
|
A MetadataPopulator(_MetadataPopulatorWithBuffer) object.
|
|
|
|
Raises:
|
|
ValueError: the model does not have the expected flatbuffer identifer.
|
|
"""
|
|
return _MetadataPopulatorWithBuffer(model_buf)
|
|
|
|
def get_model_buffer(self):
|
|
"""Gets the buffer of the model with packed metadata and associated files.
|
|
|
|
Returns:
|
|
Model buffer (in bytearray).
|
|
"""
|
|
with open(self._model_file, "rb") as f:
|
|
return f.read()
|
|
|
|
def get_packed_associated_file_list(self):
|
|
"""Gets a list of associated files packed to the model file.
|
|
|
|
Returns:
|
|
List of packed associated files.
|
|
"""
|
|
if not zipfile.is_zipfile(self._model_file):
|
|
return []
|
|
|
|
with zipfile.ZipFile(self._model_file, "r") as zf:
|
|
return zf.namelist()
|
|
|
|
def get_recorded_associated_file_list(self):
|
|
"""Gets a list of associated files recorded in metadata of the model file.
|
|
|
|
Associated files may be attached to a model, a subgraph, or an input/output
|
|
tensor.
|
|
|
|
Returns:
|
|
List of recorded associated files.
|
|
"""
|
|
recorded_files = []
|
|
|
|
if not self._metadata_buf:
|
|
return recorded_files
|
|
|
|
metadata = _metadata_fb.ModelMetadata.GetRootAsModelMetadata(
|
|
self._metadata_buf, 0)
|
|
|
|
# Add associated files attached to ModelMetadata
|
|
self._get_associated_files_from_metadata_struct(metadata, recorded_files)
|
|
|
|
# Add associated files attached to each SubgraphMetadata
|
|
for j in range(metadata.SubgraphMetadataLength()):
|
|
subgraph = metadata.SubgraphMetadata(j)
|
|
self._get_associated_files_from_metadata_struct(subgraph, recorded_files)
|
|
|
|
# Add associated files attached to each input tensor
|
|
for k in range(subgraph.InputTensorMetadataLength()):
|
|
tensor = subgraph.InputTensorMetadata(k)
|
|
self._get_associated_files_from_metadata_struct(tensor, recorded_files)
|
|
|
|
# Add associated files attached to each output tensor
|
|
for k in range(subgraph.OutputTensorMetadataLength()):
|
|
tensor = subgraph.OutputTensorMetadata(k)
|
|
self._get_associated_files_from_metadata_struct(tensor, recorded_files)
|
|
|
|
return recorded_files
|
|
|
|
def load_associated_files(self, associated_files):
|
|
"""Loads associated files that to be concatenated after the model file.
|
|
|
|
Args:
|
|
associated_files: list of file paths.
|
|
|
|
Raises:
|
|
IOError:
|
|
File not found.
|
|
"""
|
|
for af in associated_files:
|
|
_assert_exist(af)
|
|
self._associated_files.add(af)
|
|
|
|
def load_metadata_buffer(self, metadata_buf):
|
|
"""Loads the metadata buffer (in bytearray) to be populated.
|
|
|
|
Args:
|
|
metadata_buf: metadata buffer (in bytearray) to be populated.
|
|
|
|
Raises:
|
|
ValueError: The metadata to be populated is empty.
|
|
ValueError: The metadata does not have the expected flatbuffer identifer.
|
|
ValueError: Error occurs when getting the minimum metadata parser version.
|
|
"""
|
|
if not metadata_buf:
|
|
raise ValueError("The metadata to be populated is empty.")
|
|
|
|
_assert_metadata_buffer_identifier(metadata_buf)
|
|
|
|
# Gets the minimum metadata parser version of the metadata_buf.
|
|
min_version = _pywrap_metadata_version.GetMinimumMetadataParserVersion(
|
|
bytes(metadata_buf))
|
|
|
|
# Inserts in the minimum metadata parser version into the metadata_buf.
|
|
metadata = _metadata_fb.ModelMetadataT.InitFromObj(
|
|
_metadata_fb.ModelMetadata.GetRootAsModelMetadata(metadata_buf, 0))
|
|
metadata.minParserVersion = min_version
|
|
|
|
b = flatbuffers.Builder(0)
|
|
b.Finish(metadata.Pack(b), self.METADATA_FILE_IDENTIFIER)
|
|
metadata_buf_with_version = b.Output()
|
|
|
|
self._metadata_buf = metadata_buf_with_version
|
|
|
|
def load_metadata_file(self, metadata_file):
|
|
"""Loads the metadata file to be populated.
|
|
|
|
Args:
|
|
metadata_file: path to the metadata file to be populated.
|
|
|
|
Raises:
|
|
IOError: File not found.
|
|
ValueError: The metadata does not have the expected flatbuffer identifer.
|
|
"""
|
|
_assert_exist(metadata_file)
|
|
with open(metadata_file, "rb") as f:
|
|
metadata_buf = f.read()
|
|
self.load_metadata_buffer(bytearray(metadata_buf))
|
|
|
|
def populate(self):
|
|
"""Populates loaded metadata and associated files into the model file."""
|
|
self._assert_validate()
|
|
self._populate_metadata_buffer()
|
|
self._populate_associated_files()
|
|
|
|
def _assert_validate(self):
|
|
"""Validates the metadata and associated files to be populated.
|
|
|
|
Raises:
|
|
ValueError:
|
|
File is recorded in the metadata, but is not going to be populated.
|
|
File has already been packed.
|
|
"""
|
|
# Gets files that are recorded in metadata.
|
|
recorded_files = self.get_recorded_associated_file_list()
|
|
|
|
# Gets files that have been packed to self._model_file.
|
|
packed_files = self.get_packed_associated_file_list()
|
|
|
|
# Gets the file name of those associated files to be populated.
|
|
to_be_populated_files = []
|
|
for af in self._associated_files:
|
|
to_be_populated_files.append(os.path.basename(af))
|
|
|
|
# Checks all files recorded in the metadata will be populated.
|
|
for rf in recorded_files:
|
|
if rf not in to_be_populated_files and rf not in packed_files:
|
|
raise ValueError("File, '{0}', is recorded in the metadata, but has "
|
|
"not been loaded into the populator.".format(rf))
|
|
|
|
for f in to_be_populated_files:
|
|
if f in packed_files:
|
|
raise ValueError("File, '{0}', has already been packed.".format(f))
|
|
|
|
if f not in recorded_files:
|
|
warnings.warn(
|
|
"File, '{0}', does not exsit in the metadata. But packing it to "
|
|
"tflite model is still allowed.".format(f))
|
|
|
|
def _copy_archived_files(self, src_zip, dst_zip, file_list):
|
|
"""Copy archieved files in file_list from src_zip ro dst_zip."""
|
|
|
|
if not zipfile.is_zipfile(src_zip):
|
|
raise ValueError("File, '{0}', is not a zipfile.".format(src_zip))
|
|
|
|
with zipfile.ZipFile(src_zip,
|
|
"r") as src_zf, zipfile.ZipFile(dst_zip,
|
|
"a") as dst_zf:
|
|
src_list = src_zf.namelist()
|
|
for f in file_list:
|
|
if f not in src_list:
|
|
raise ValueError(
|
|
"File, '{0}', does not exist in the zipfile, {1}.".format(
|
|
f, src_zip))
|
|
file_buffer = src_zf.read(f)
|
|
dst_zf.writestr(f, file_buffer)
|
|
|
|
def _get_associated_files_from_metadata_struct(self, file_holder, file_list):
|
|
for j in range(file_holder.AssociatedFilesLength()):
|
|
file_list.append(file_holder.AssociatedFiles(j).Name().decode("utf-8"))
|
|
|
|
def _populate_associated_files(self):
|
|
"""Concatenates associated files after TensorFlow Lite model file.
|
|
|
|
If the MetadataPopulator object is created using the method,
|
|
with_model_file(model_file), the model file will be updated.
|
|
"""
|
|
# Opens up the model file in "appending" mode.
|
|
# If self._model_file already has pack files, zipfile will concatenate
|
|
# addition files after self._model_file. For example, suppose we have
|
|
# self._model_file = old_tflite_file | label1.txt | label2.txt
|
|
# Then after trigger populate() to add label3.txt, self._model_file becomes
|
|
# self._model_file = old_tflite_file | label1.txt | label2.txt | label3.txt
|
|
with zipfile.ZipFile(self._model_file, "a") as zf:
|
|
for af in self._associated_files:
|
|
filename = os.path.basename(af)
|
|
zf.write(af, filename)
|
|
|
|
def _populate_metadata_buffer(self):
|
|
"""Populates the metadata buffer (in bytearray) into the model file.
|
|
|
|
Inserts metadata_buf into the metadata field of schema.Model. If the
|
|
MetadataPopulator object is created using the method,
|
|
with_model_file(model_file), the model file will be updated.
|
|
|
|
Existing metadata buffer (if applied) will be overridden by the new metadata
|
|
buffer.
|
|
"""
|
|
|
|
with open(self._model_file, "rb") as f:
|
|
model_buf = f.read()
|
|
|
|
model = _schema_fb.ModelT.InitFromObj(
|
|
_schema_fb.Model.GetRootAsModel(model_buf, 0))
|
|
buffer_field = _schema_fb.BufferT()
|
|
buffer_field.data = self._metadata_buf
|
|
|
|
is_populated = False
|
|
if not model.metadata:
|
|
model.metadata = []
|
|
else:
|
|
# Check if metadata has already been populated.
|
|
for meta in model.metadata:
|
|
if meta.name.decode("utf-8") == self.METADATA_FIELD_NAME:
|
|
is_populated = True
|
|
model.buffers[meta.buffer] = buffer_field
|
|
|
|
if not is_populated:
|
|
if not model.buffers:
|
|
model.buffers = []
|
|
model.buffers.append(buffer_field)
|
|
# Creates a new metadata field.
|
|
metadata_field = _schema_fb.MetadataT()
|
|
metadata_field.name = self.METADATA_FIELD_NAME
|
|
metadata_field.buffer = len(model.buffers) - 1
|
|
model.metadata.append(metadata_field)
|
|
|
|
# Packs model back to a flatbuffer binaray file.
|
|
b = flatbuffers.Builder(0)
|
|
b.Finish(model.Pack(b), self.TFLITE_FILE_IDENTIFIER)
|
|
model_buf = b.Output()
|
|
|
|
# Saves the updated model buffer to model file.
|
|
# Gets files that have been packed to self._model_file.
|
|
packed_files = self.get_packed_associated_file_list()
|
|
if packed_files:
|
|
# Writes the updated model buffer and associated files into a new model
|
|
# file. Then overwrites the original model file.
|
|
with tempfile.NamedTemporaryFile() as temp:
|
|
new_file = temp.name
|
|
with open(new_file, "wb") as f:
|
|
f.write(model_buf)
|
|
self._copy_archived_files(self._model_file, new_file, packed_files)
|
|
shutil.copy(new_file, self._model_file)
|
|
os.remove(new_file)
|
|
else:
|
|
with open(self._model_file, "wb") as f:
|
|
f.write(model_buf)
|
|
|
|
|
|
class _MetadataPopulatorWithBuffer(MetadataPopulator):
|
|
"""Subclass of MetadtaPopulator that populates metadata to a model buffer.
|
|
|
|
This class is used to populate metadata into a in-memory model buffer. As we
|
|
use Zip API to concatenate associated files after tflite model file, the
|
|
populating operation is developed based on a model file. For in-memory model
|
|
buffer, we create a tempfile to serve the populating operation. This class is
|
|
then used to generate this tempfile, and delete the file when the
|
|
MetadataPopulator object is deleted.
|
|
"""
|
|
|
|
def __init__(self, model_buf):
|
|
"""Constructor for _MetadataPopulatorWithBuffer.
|
|
|
|
Args:
|
|
model_buf: TensorFlow Lite model buffer in bytearray.
|
|
|
|
Raises:
|
|
ValueError: model_buf is empty.
|
|
ValueError: model_buf does not have the expected flatbuffer identifer.
|
|
"""
|
|
if not model_buf:
|
|
raise ValueError("model_buf cannot be empty.")
|
|
|
|
with tempfile.NamedTemporaryFile() as temp:
|
|
model_file = temp.name
|
|
|
|
with open(model_file, "wb") as f:
|
|
f.write(model_buf)
|
|
|
|
MetadataPopulator.__init__(self, model_file)
|
|
|
|
def __del__(self):
|
|
"""Destructor of _MetadataPopulatorWithBuffer.
|
|
|
|
Deletes the tempfile.
|
|
"""
|
|
if os.path.exists(self._model_file):
|
|
os.remove(self._model_file)
|
|
|
|
|
|
class MetadataDisplayer(object):
|
|
"""Displays metadata and associated file info in human-readable format."""
|
|
|
|
def __init__(self, model_file, metadata_file, associated_file_list):
|
|
"""Constructor for MetadataDisplayer.
|
|
|
|
Args:
|
|
model_file: valid path to the model file.
|
|
metadata_file: valid path to the metadata file.
|
|
associated_file_list: list of associate files in the model file.
|
|
"""
|
|
_assert_model_file_identifier(model_file)
|
|
_assert_metadata_file_identifier(metadata_file)
|
|
self._model_file = model_file
|
|
self._metadata_file = metadata_file
|
|
self._associated_file_list = associated_file_list
|
|
|
|
@classmethod
|
|
def with_model_file(cls, model_file):
|
|
"""Creates a MetadataDisplayer object for the model file.
|
|
|
|
Args:
|
|
model_file: valid path to a TensorFlow Lite model file.
|
|
|
|
Returns:
|
|
MetadataDisplayer object.
|
|
|
|
Raises:
|
|
IOError: File not found.
|
|
ValueError: The model does not have metadata.
|
|
"""
|
|
_assert_exist(model_file)
|
|
metadata_file = cls._save_temporary_metadata_file(model_file)
|
|
associated_file_list = cls._parse_packed_associted_file_list(model_file)
|
|
return cls(model_file, metadata_file, associated_file_list)
|
|
|
|
@classmethod
|
|
def with_model_buffer(cls, model_buffer):
|
|
"""Creates a MetadataDisplayer object for a file buffer.
|
|
|
|
Args:
|
|
model_buffer: TensorFlow Lite model buffer in bytearray.
|
|
|
|
Returns:
|
|
MetadataDisplayer object.
|
|
"""
|
|
if not model_buffer:
|
|
raise ValueError("model_buffer cannot be empty.")
|
|
|
|
with tempfile.NamedTemporaryFile() as temp:
|
|
model_file = temp.name
|
|
|
|
with open(model_file, "wb") as f:
|
|
f.write(model_buffer)
|
|
return cls.with_model_file(model_file)
|
|
|
|
def get_metadata_json(self):
|
|
"""Converts the metadata into a json string."""
|
|
opt = _pywrap_flatbuffers.IDLOptions()
|
|
opt.strict_json = True
|
|
parser = _pywrap_flatbuffers.Parser(opt)
|
|
with open(_FLATC_TFLITE_METADATA_SCHEMA_FILE) as f:
|
|
metadata_schema_content = f.read()
|
|
with open(self._metadata_file, "rb") as f:
|
|
metadata_file_content = f.read()
|
|
if not parser.parse(metadata_schema_content):
|
|
raise ValueError("Cannot parse metadata schema. Reason: " + parser.error)
|
|
with open(self._metadata_file, "rb") as f:
|
|
metadata_file_content = f.read()
|
|
return _pywrap_flatbuffers.generate_text(parser, metadata_file_content)
|
|
|
|
def get_packed_associated_file_list(self):
|
|
"""Returns a list of associated files that are packed in the model.
|
|
|
|
Returns:
|
|
A name list of associated files.
|
|
"""
|
|
return copy.deepcopy(self._associated_file_list)
|
|
|
|
@staticmethod
|
|
def _save_temporary_metadata_file(model_file):
|
|
"""Saves the metadata in the model file to a temporary file.
|
|
|
|
Args:
|
|
model_file: valid path to the model file.
|
|
|
|
Returns:
|
|
Path to the metadata temporary file.
|
|
|
|
Raises:
|
|
ValueError: The model does not have metadata.
|
|
"""
|
|
with open(model_file, "rb") as f:
|
|
model_buf = f.read()
|
|
|
|
tflite_model = _schema_fb.Model.GetRootAsModel(model_buf, 0)
|
|
|
|
# Gets metadata from the model file.
|
|
for i in range(tflite_model.MetadataLength()):
|
|
meta = tflite_model.Metadata(i)
|
|
if meta.Name().decode("utf-8") == MetadataPopulator.METADATA_FIELD_NAME:
|
|
buffer_index = meta.Buffer()
|
|
metadata = tflite_model.Buffers(buffer_index)
|
|
metadata_buf = metadata.DataAsNumpy().tobytes()
|
|
# Creates a temporary file to store the metadata.
|
|
with tempfile.NamedTemporaryFile() as temp:
|
|
metadata_file = temp.name
|
|
# Saves the metadata into the temporary file.
|
|
with open(metadata_file, "wb") as f:
|
|
f.write(metadata_buf)
|
|
return metadata_file
|
|
|
|
raise ValueError("The model does not have metadata.")
|
|
|
|
@staticmethod
|
|
def _parse_packed_associted_file_list(model_file):
|
|
"""Gets a list of associated files packed to the model file.
|
|
|
|
Args:
|
|
model_file: valid path to the model file.
|
|
|
|
Returns:
|
|
List of packed associated files.
|
|
"""
|
|
if not zipfile.is_zipfile(model_file):
|
|
return []
|
|
|
|
with zipfile.ZipFile(model_file, "r") as zf:
|
|
return zf.namelist()
|
|
|
|
def __del__(self):
|
|
"""Destructor of MetadataDisplayer.
|
|
|
|
Deletes the tempfile.
|
|
"""
|
|
if os.path.exists(self._metadata_file):
|
|
os.remove(self._metadata_file)
|
|
|
|
|
|
def _assert_exist(filename):
|
|
"""Checks if a file exists."""
|
|
if not os.path.exists(filename):
|
|
raise IOError("File, '{0}', does not exist.".format(filename))
|
|
|
|
|
|
def _assert_model_file_identifier(model_file):
|
|
"""Checks if a model file has the expected TFLite schema identifier."""
|
|
_assert_exist(model_file)
|
|
with open(model_file, "rb") as f:
|
|
model_buf = f.read()
|
|
|
|
if not _schema_fb.Model.ModelBufferHasIdentifier(model_buf, 0):
|
|
raise ValueError(
|
|
"The model provided does not have the expected identifier, and "
|
|
"may not be a valid TFLite model.")
|
|
|
|
|
|
def _assert_metadata_file_identifier(metadata_file):
|
|
"""Checks if a metadata file has the expected Metadata schema identifier."""
|
|
_assert_exist(metadata_file)
|
|
with open(metadata_file, "rb") as f:
|
|
metadata_buf = f.read()
|
|
_assert_metadata_buffer_identifier(metadata_buf)
|
|
|
|
|
|
def _assert_metadata_buffer_identifier(metadata_buf):
|
|
"""Checks if a metadata buffer has the expected Metadata schema identifier."""
|
|
if not _metadata_fb.ModelMetadata.ModelMetadataBufferHasIdentifier(
|
|
metadata_buf, 0):
|
|
raise ValueError(
|
|
"The metadata buffer does not have the expected identifier, and may not"
|
|
" be a valid TFLite Metadata.")
|