STT-tensorflow/tensorflow/lite/core/subgraph.cc
Jared Duke c40d59d7c7 Fix MSVC builds for TFLite
Use of std::min/max requires the <algorithm> include w/ MSVC. Move
min/max usage in the Subgraph header to the source file, where
<algorithm> is already included.

PiperOrigin-RevId: 314841660
Change-Id: I7a05569677eb057cd7f52d45e194abf016429560
2020-06-04 18:15:33 -07:00

1431 lines
54 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/core/subgraph.h"
#include <algorithm>
#include "tensorflow/lite/arena_planner.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/context_util.h"
#include "tensorflow/lite/core/api/tensor_utils.h"
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h"
#include "tensorflow/lite/graph_info.h"
#include "tensorflow/lite/minimal_logging.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/util.h"
namespace tflite {
namespace impl {
namespace {
struct TfLiteQuantizationDeleter {
void operator()(TfLiteQuantization* q) {
if (q) TfLiteQuantizationFree(q);
}
};
using ScopedTfLiteQuantization =
std::unique_ptr<TfLiteQuantization, TfLiteQuantizationDeleter>;
struct TfLiteSparsityDeleter {
void operator()(TfLiteSparsity* s) {
if (s) TfLiteSparsityFree(s);
}
};
using ScopedTfLiteSparsity =
std::unique_ptr<TfLiteSparsity, TfLiteSparsityDeleter>;
TfLiteStatus ReportOpError(TfLiteContext* context, const TfLiteNode& node,
const TfLiteRegistration& registration,
int node_index, const char* message) {
context->ReportError(
context, "Node number %d (%s) %s.\n", node_index,
registration.custom_name
? registration.custom_name
: EnumNameBuiltinOperator(
static_cast<BuiltinOperator>(registration.builtin_code)),
message);
return kTfLiteError;
}
// Stub method which returns kTfLiteError when the function is forbidden.
// We're registering this function to several different function to save
// compiled binary size. Please note the restrictions:
// * The type of first parameter have to be `TfLiteContext*`.
// * All parameters must be trivially destructible. (E.g. No C++ class)
TfLiteStatus ForbiddenContextFunction(TfLiteContext* context, ...) {
context->ReportError(context,
"The function is forbidden if not calling in delegate.");
return kTfLiteError;
}
// Set the ForbiddenContextFunction to a compatible function pointer.
template <typename FunctionType>
void SetForbiddenContextFunction(FunctionType* func) {
*func = reinterpret_cast<FunctionType>(ForbiddenContextFunction);
}
// Returns true if at least one tensor in the given list is kTfLiteDynamic.
template <typename TensorIntArray>
bool HasDynamicTensorImpl(const TfLiteContext& context,
const TensorIntArray& int_array) {
for (int i : int_array) {
const TfLiteTensor& tensor = context.tensors[i];
if (tensor.allocation_type == kTfLiteDynamic) {
return true;
}
}
return false;
}
bool HasDynamicTensor(const TfLiteContext& context,
const TfLiteIntArray* int_array) {
return HasDynamicTensorImpl(context, TfLiteIntArrayView{int_array});
}
// Gets the legacy TfLiteQuantizationParams from the current TfLiteQuantization.
TfLiteQuantizationParams GetLegacyQuantization(
const TfLiteQuantization& quantization) {
TfLiteQuantizationParams legacy_quantization;
legacy_quantization.scale = 0;
legacy_quantization.zero_point = 0;
// If the quantization type isn't affine, return the empty
// legacy_quantization.
if (quantization.type != kTfLiteAffineQuantization) {
return legacy_quantization;
}
auto* affine_quantization =
static_cast<TfLiteAffineQuantization*>(quantization.params);
if (!affine_quantization || !affine_quantization->scale ||
!affine_quantization->zero_point ||
affine_quantization->scale->size != 1 ||
affine_quantization->zero_point->size != 1) {
return legacy_quantization;
}
// We know its per-layer quantization now.
legacy_quantization.scale = affine_quantization->scale->data[0];
legacy_quantization.zero_point = affine_quantization->zero_point->data[0];
return legacy_quantization;
}
static constexpr const char kUnknownCustomOpName[] = "UnknownCustomOp";
const char* GetTFLiteOpName(const TfLiteRegistration& op_reg) {
if (op_reg.builtin_code == tflite::BuiltinOperator_CUSTOM) {
const char* const custom_name = op_reg.custom_name;
return custom_name ? custom_name : kUnknownCustomOpName;
}
if (op_reg.builtin_code == tflite::BuiltinOperator_DELEGATE &&
op_reg.custom_name) {
return op_reg.custom_name;
}
return tflite::EnumNamesBuiltinOperator()[op_reg.builtin_code];
}
} // namespace
// A trivial implementation of GraphInfo around the Interpreter.
// NOTE: this interpreter info represents the subset of the
// graph that is executed according to execution plan. Thus,
// the indices are execution plan indices rather than raw node
// indices.
class InterpreterInfo : public GraphInfo {
public:
explicit InterpreterInfo(Subgraph* subgraph) : subgraph_(subgraph) {}
size_t num_tensors() const override { return subgraph_->tensors().size(); }
TfLiteTensor* tensor(size_t index) override {
return &subgraph_->tensors()[index];
}
size_t num_nodes() const override {
return subgraph_->execution_plan().size();
}
const TfLiteNode& node(size_t index) const override {
int node_index = subgraph_->execution_plan()[index];
return subgraph_->nodes_and_registration()[node_index].first;
}
size_t node_index(size_t index) const override {
return subgraph_->execution_plan()[index];
}
const std::vector<int>& inputs() const override {
return subgraph_->inputs();
}
const std::vector<int>& outputs() const override {
return subgraph_->outputs();
}
const std::vector<int>& variables() const override {
return subgraph_->variables();
}
public:
Subgraph* subgraph_;
};
Subgraph::Subgraph(ErrorReporter* error_reporter,
TfLiteExternalContext** external_contexts,
std::vector<std::unique_ptr<Subgraph>>* subgraphs,
resource::ResourceMap* resources)
: external_contexts_(external_contexts),
error_reporter_(error_reporter),
next_execution_plan_index_to_prepare_(0),
next_execution_plan_index_to_plan_allocation_(0),
subgraphs_(subgraphs),
resources_(resources) {
context_.impl_ = static_cast<void*>(this);
context_.ResizeTensor = ResizeTensor;
context_.ReportError = ReportErrorC;
context_.AddTensors = AddTensors;
context_.tensors = nullptr;
context_.tensors_size = 0;
context_.allow_fp32_relax_to_fp16 = false;
context_.recommended_num_threads = -1;
context_.GetExternalContext = GetExternalContext;
context_.SetExternalContext = SetExternalContext;
context_.profiler = nullptr;
// Reserve some space for the tensors to avoid excessive resizing.
tensors_.reserve(kTensorsReservedCapacity);
nodes_and_registration().reserve(kTensorsReservedCapacity);
// Invalid to call these these except from TfLiteDelegate
SwitchToKernelContext();
}
Subgraph::~Subgraph() {
for (int node_index = 0; node_index < nodes_and_registration_.size();
++node_index) {
CleanupNode(node_index);
}
for (size_t i = 0; i < context_.tensors_size; i++) {
TfLiteTensor* tensor = &context_.tensors[i];
if (tensor->buffer_handle != kTfLiteNullBufferHandle &&
tensor->delegate->FreeBufferHandle != nullptr) {
tensor->delegate->FreeBufferHandle(&context_, tensor->delegate,
&tensor->buffer_handle);
}
TfLiteTensorFree(tensor);
}
}
void Subgraph::CleanupNode(int node_index) {
TfLiteNode& node = nodes_and_registration_[node_index].first;
const TfLiteRegistration& registration =
nodes_and_registration_[node_index].second;
TfLiteIntArrayFree(node.inputs);
TfLiteIntArrayFree(node.outputs);
TfLiteIntArrayFree(node.temporaries);
TfLiteIntArrayFree(node.intermediates);
if (node.builtin_data) free(node.builtin_data);
OpFree(registration, node.user_data);
node.builtin_data = nullptr;
}
TfLiteStatus Subgraph::ReplaceNodeSubsetsWithDelegateKernels(
TfLiteContext* context, TfLiteRegistration registration,
const TfLiteIntArray* nodes_to_replace, TfLiteDelegate* delegate) {
return static_cast<Subgraph*>(context->impl_)
->ReplaceNodeSubsetsWithDelegateKernels(registration, nodes_to_replace,
delegate);
}
namespace {
// Copy a std::vector<int> to an existing TfLiteIntArray.
// This is a low-level data manipulation function, and it's caller's
// responsibility to ensure TfLiteIntArray has enough size.
void CopyVectorToTfLiteIntArray(const std::vector<int>& vec,
TfLiteIntArray* arr) {
arr->size = vec.size();
memcpy(arr->data, vec.data(), sizeof(int) * arr->size);
}
// This function allocates a continuous memory space that contains a
// TfLiteDelegateParams followed by a several TfLiteIntArray.
// When calling `free` at TfLiteDelegateParams*, all the allocated space
// will be freed together.
//
// +-----------------------------------+
// | TfLiteDelegateParams |
// | TfLiteDelegate* delegate; |
// | TfLiteIntArray* nodes_to_replace; |--\
// | TfLiteIntArray* input_tensors; |--+--\
// | TfLiteIntArray* output_tensors; |--+--+--\
// +-----------------------------------+ | | |
// | TfLiteIntArray (variable size) |<-/ | |
// +-----------------------------------+ | |
// | TfLiteIntArray (variable size) |<----/ |
// +-----------------------------------+ |
// | TfLiteIntArray (variable size) |<-------/
// +-----------------------------------+
TfLiteDelegateParams* CreateDelegateParams(TfLiteDelegate* delegate,
const NodeSubset& node_subset) {
// Step 1: Calculate the allocation size.
int allocation_size = sizeof(TfLiteDelegateParams);
int nodes_to_replace_size =
TfLiteIntArrayGetSizeInBytes(node_subset.nodes.size());
allocation_size += nodes_to_replace_size;
int input_tensors_size =
TfLiteIntArrayGetSizeInBytes(node_subset.input_tensors.size());
allocation_size += input_tensors_size;
int output_tensors_size =
TfLiteIntArrayGetSizeInBytes(node_subset.output_tensors.size());
allocation_size += output_tensors_size;
// Step 2: Allocate the memory.
// Use `char*` for conveniently step through the allocated space by bytes.
char* allocation = static_cast<char*>(malloc(allocation_size));
// Step 3: Fill all data structures structures.
TfLiteDelegateParams* params =
reinterpret_cast<TfLiteDelegateParams*>(allocation);
params->delegate = delegate;
allocation += sizeof(TfLiteDelegateParams);
params->nodes_to_replace = reinterpret_cast<TfLiteIntArray*>(allocation);
CopyVectorToTfLiteIntArray(node_subset.nodes, params->nodes_to_replace);
allocation += nodes_to_replace_size;
params->input_tensors = reinterpret_cast<TfLiteIntArray*>(allocation);
CopyVectorToTfLiteIntArray(node_subset.input_tensors, params->input_tensors);
allocation += input_tensors_size;
params->output_tensors = reinterpret_cast<TfLiteIntArray*>(allocation);
CopyVectorToTfLiteIntArray(node_subset.output_tensors,
params->output_tensors);
allocation += output_tensors_size;
return params;
}
// Assumes that params is not nullptr.
void PopulatePreviewDelegateParams(const NodeSubset& node_subset,
TfLiteDelegateParams* params) {
// Since these params are used for previewing partitioning, params->delegate
// is not required.
params->delegate = nullptr;
params->nodes_to_replace = TfLiteIntArrayCreate(node_subset.nodes.size());
CopyVectorToTfLiteIntArray(node_subset.nodes, params->nodes_to_replace);
params->input_tensors =
TfLiteIntArrayCreate(node_subset.input_tensors.size());
CopyVectorToTfLiteIntArray(node_subset.input_tensors, params->input_tensors);
params->output_tensors =
TfLiteIntArrayCreate(node_subset.output_tensors.size());
CopyVectorToTfLiteIntArray(node_subset.output_tensors,
params->output_tensors);
}
} // namespace
TfLiteStatus Subgraph::ReplaceNodeSubsetsWithDelegateKernels(
TfLiteRegistration registration, const TfLiteIntArray* nodes_to_replace,
TfLiteDelegate* delegate) {
// Ignore empty node replacement sets.
if (!nodes_to_replace->size) {
return kTfLiteOk;
}
// Annotate the registration as DELEGATE op.
registration.builtin_code = BuiltinOperator_DELEGATE;
// Analyze the graph to find all independent node_subsets that are either
// fully not-this-delegate or this-delegate computation.
InterpreterInfo info(this);
std::vector<NodeSubset> node_subsets;
PartitionGraphIntoIndependentNodeSubsets(&info, nodes_to_replace,
&node_subsets);
TFLITE_LOG(
tflite::TFLITE_LOG_INFO,
"Replacing %d node(s) with delegate (%s) node, yielding %zu partitions.",
nodes_to_replace->size,
registration.custom_name ? registration.custom_name : "unknown",
node_subsets.size());
execution_plan_.clear();
for (auto& node_subset : node_subsets) {
// Subsets claimed by the delegate should have a "macro" op created, the
// other node_subsets (kTfNonPartition) just have their nodes added back to
// the execution plan.
switch (node_subset.type) {
case NodeSubset::kTfNonPartition:
for (auto it = node_subset.nodes.begin(); it != node_subset.nodes.end();
++it) {
execution_plan_.push_back(*it);
}
break;
case NodeSubset::kTfPartition: {
int node_index;
TfLiteDelegateParams* params =
CreateDelegateParams(delegate, node_subset);
TF_LITE_ENSURE_STATUS(AddNodeWithParameters(
node_subset.input_tensors, node_subset.output_tensors, {}, nullptr,
0, params, &registration, &node_index));
// Initialize the output tensors's delegate-related fields.
for (int tensor_index : node_subset.output_tensors) {
TfLiteTensor* tensor = &tensors_[tensor_index];
TF_LITE_ENSURE(&context_, tensor->delegate == nullptr ||
tensor->delegate == delegate);
tensor->delegate = delegate;
}
// Associate the node with the delegate.
TfLiteNode* node = &nodes_and_registration_[node_index].first;
node->delegate = delegate;
} break;
case NodeSubset::kTfUnexplored:
return kTfLiteError;
break;
}
}
return kTfLiteOk;
}
TfLiteExternalContext* Subgraph::GetExternalContext(
TfLiteExternalContextType type) {
if (static_cast<int>(type) >= 0 && type < kTfLiteMaxExternalContexts) {
return external_contexts_[type];
}
return nullptr;
}
TfLiteExternalContext* Subgraph::GetExternalContext(
struct TfLiteContext* context, TfLiteExternalContextType type) {
return static_cast<Subgraph*>(context->impl_)->GetExternalContext(type);
}
void Subgraph::SetExternalContext(TfLiteExternalContextType type,
TfLiteExternalContext* ctx) {
if (static_cast<int>(type) >= 0 && type < kTfLiteMaxExternalContexts) {
external_contexts_[type] = ctx;
}
}
void Subgraph::SetExternalContext(struct TfLiteContext* context,
TfLiteExternalContextType type,
TfLiteExternalContext* ctx) {
return static_cast<Subgraph*>(context->impl_)->SetExternalContext(type, ctx);
}
// Gets an TfLiteIntArray* representing the execution plan. The interpreter owns
// this memory and it is only guaranteed to exist during the invocation of the
// delegate prepare.
TfLiteStatus Subgraph::GetExecutionPlan(TfLiteIntArray** execution_plan) {
// TODO(aselle): Do not make a copy here
plan_cache_.reset(TfLiteIntArrayCreate(execution_plan_.size()));
*execution_plan = plan_cache_.get();
static_assert(sizeof(plan_cache_->data[0]) == sizeof(execution_plan_[0]),
"TfLiteIntArray and execution_plan do not contain same type.");
std::memcpy(plan_cache_->data, execution_plan_.data(),
sizeof(plan_cache_->data[0]) * execution_plan_.size());
return kTfLiteOk;
}
// WARNING: This is an experimental interface that is subject to change.
// Entry point for C node plugin API to get the execution plan
TfLiteStatus Subgraph::GetExecutionPlan(struct TfLiteContext* context,
TfLiteIntArray** execution_plan) {
return static_cast<Subgraph*>(context->impl_)
->GetExecutionPlan(execution_plan);
}
void Subgraph::FreeDelegatePartitioningData() {
for (auto& params : partitioning_preview_cache_) {
TfLiteIntArrayFree(params.nodes_to_replace);
TfLiteIntArrayFree(params.input_tensors);
TfLiteIntArrayFree(params.output_tensors);
}
partitioning_preview_cache_.clear();
}
TfLiteStatus Subgraph::PreviewDelegatePartitioning(
const TfLiteIntArray* nodes_to_replace,
TfLiteDelegateParams** partition_params_array, int* num_partitions) {
// Ensure partitioning cache is empty.
FreeDelegatePartitioningData();
// Defaults.
if (!partition_params_array || !num_partitions) return kTfLiteError;
*partition_params_array = nullptr;
*num_partitions = 0;
if (!nodes_to_replace->size) {
return kTfLiteOk;
}
// Partition the execution plan into node subsets.
InterpreterInfo info(this);
std::vector<NodeSubset> node_subsets;
PartitionGraphIntoIndependentNodeSubsets(&info, nodes_to_replace,
&node_subsets);
// Create one TfLiteDelegateParams per node-subset which would be delegated.
for (auto& node_subset : node_subsets) {
if (node_subset.type != NodeSubset::kTfPartition) {
continue;
}
partitioning_preview_cache_.emplace_back();
PopulatePreviewDelegateParams(node_subset,
&partitioning_preview_cache_.back());
++*num_partitions;
}
*partition_params_array = partitioning_preview_cache_.data();
return kTfLiteOk;
}
TfLiteStatus Subgraph::PreviewDelegatePartitioning(
struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace,
TfLiteDelegateParams** partition_params_array, int* num_partitions) {
return static_cast<Subgraph*>(context->impl_)
->PreviewDelegatePartitioning(nodes_to_replace, partition_params_array,
num_partitions);
}
TfLiteStatus Subgraph::SetInputs(std::vector<int> inputs) {
TF_LITE_ENSURE_OK(&context_,
CheckTensorIndices("inputs", inputs.data(), inputs.size()));
inputs_ = std::move(inputs);
return kTfLiteOk;
}
TfLiteStatus Subgraph::SetOutputs(std::vector<int> outputs) {
TF_LITE_ENSURE_OK(
&context_, CheckTensorIndices("outputs", outputs.data(), outputs.size()));
outputs_ = std::move(outputs);
return kTfLiteOk;
}
TfLiteStatus Subgraph::SetVariables(std::vector<int> variables) {
TF_LITE_ENSURE_OK(&context_, CheckTensorIndices("variables", variables.data(),
variables.size()));
variables_ = std::move(variables);
return kTfLiteOk;
}
void Subgraph::SetCancellationFunction(void* data,
bool (*check_cancelled_func)(void*)) {
cancellation_data_ = data;
check_cancelled_func_ = check_cancelled_func;
}
bool Subgraph::IsCancelled() {
return (check_cancelled_func_ != nullptr) &&
(*check_cancelled_func_)(cancellation_data_);
}
void Subgraph::ReserveNodes(int count) {
nodes_and_registration_.reserve(count);
}
TfLiteStatus Subgraph::CheckTensorIndices(const char* label, const int* indices,
int length) {
// Making sure kTfLiteOptionalTensor is not re-defined to something other than
// -1.
static_assert(kTfLiteOptionalTensor == -1,
"kTfLiteOptionalTensor should be defined -1");
for (int i = 0; i < length; i++) {
int index = indices[i];
// Continue if index == kTfLiteOptionalTensor before additional comparisons
// below, size_t(-1) is always >= context_tensors_size.
if (index == kTfLiteOptionalTensor) {
continue;
}
if (index < 0 || static_cast<size_t>(index) >= context_.tensors_size) {
ReportError(
"Invalid tensor index %d in %s. The subgraph has %d tensors\n", index,
label, context_.tensors_size);
consistent_ = false;
return kTfLiteError;
}
}
return kTfLiteOk;
}
namespace {
// Multiply two sizes and return true if overflow occurred;
// This is based off tensorflow/overflow.h but is simpler as we already
// have unsigned numbers. It is also generalized to work where sizeof(size_t)
// is not 8.
TfLiteStatus MultiplyAndCheckOverflow(size_t a, size_t b, size_t* product) {
// Multiplying a * b where a and b are size_t cannot result in overflow in a
// size_t accumulator if both numbers have no non-zero bits in their upper
// half.
constexpr size_t size_t_bits = 8 * sizeof(size_t);
constexpr size_t overflow_upper_half_bit_position = size_t_bits / 2;
*product = a * b;
// If neither integers have non-zero bits past 32 bits can't overflow.
// Otherwise check using slow devision.
if (TFLITE_EXPECT_FALSE((a | b) >> overflow_upper_half_bit_position != 0)) {
if (a != 0 && *product / a != b) return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace
TfLiteStatus Subgraph::BytesRequired(TfLiteType type, const int* dims,
size_t dims_size, size_t* bytes) {
TF_LITE_ENSURE(&context_, bytes != nullptr);
size_t count = 1;
for (int k = 0; k < dims_size; k++) {
size_t old_count = count;
TF_LITE_ENSURE_MSG(
&context_,
MultiplyAndCheckOverflow(old_count, dims[k], &count) == kTfLiteOk,
"BytesRequired number of elements overflowed.\n");
}
size_t type_size = 0;
TF_LITE_ENSURE_OK(&context_, GetSizeOfType(&context_, type, &type_size));
TF_LITE_ENSURE_MSG(
&context_, MultiplyAndCheckOverflow(type_size, count, bytes) == kTfLiteOk,
"BytesRequired number of bytes overflowed.\n");
return kTfLiteOk;
}
TfLiteStatus Subgraph::AllocateTensors() {
TFLITE_SCOPED_TAGGED_DEFAULT_PROFILE(profiler_.get(), "AllocateTensors");
if (!consistent_) {
ReportError("AllocateTensors() called on inconsistent model.");
return kTfLiteError;
}
// Restore delegation state if applicable.
TF_LITE_ENSURE_STATUS(RedoAllDelegates());
// Explicit (re)allocation is necessary if nodes have been changed or tensors
// have been resized. For inputs marked as dynamic, we can't short-circuit the
// allocation as the client may have done the resize manually.
if (state_ != kStateUninvokable &&
!HasDynamicTensorImpl(context_, inputs())) {
if (memory_planner_ && !memory_planner_->HasNonPersistentMemory()) {
// If the only change was the release of non-persistent memory via
// ReleaseNonPersistentMemory(), just re-allocate it. For any other type
// of memory-planning change (for eg, ResizeInputTensor), the state would
// be kStateUninvokable.
memory_planner_->AcquireNonPersistentMemory();
}
return kTfLiteOk;
}
next_execution_plan_index_to_prepare_ = 0;
next_execution_plan_index_to_plan_allocation_ = 0;
if (memory_planner_) {
TF_LITE_ENSURE_STATUS(memory_planner_->ResetAllocations());
}
TF_LITE_ENSURE_STATUS(PrepareOpsAndTensors());
state_ = kStateInvokable;
// Reset the variable tensors to zero after (re)allocating the tensors.
// Developers shouldn't rely on the side effect of this function to reset
// variable tensors. They should call `ResetVariableTensors` directly
// instead.
ResetVariableTensors();
return kTfLiteOk;
}
// TODO(ycling): Support non-zero default values.
TfLiteStatus Subgraph::ResetVariableTensors() {
for (auto& tensor : tensors_) {
if (!tensor.is_variable) {
continue;
}
// Variable tensors have to be `kTfLiteArenaRwPersistent`, and must be
// allocated after the initial `PrepareOpsAndTensors()` is called.
TF_LITE_ENSURE_EQ(&context_, tensor.allocation_type,
kTfLiteArenaRwPersistent);
TF_LITE_ENSURE(&context_, tensor.data.raw != nullptr);
tflite::ResetVariableTensor(&tensor);
}
return kTfLiteOk;
}
TfLiteStatus Subgraph::AddNodeWithParameters(
const std::vector<int>& inputs, const std::vector<int>& outputs,
const std::vector<int>& intermediates, const char* init_data,
size_t init_data_size, void* builtin_data,
const TfLiteRegistration* registration, int* node_index) {
std::unique_ptr<void, decltype(free)*> builtin_data_deleter(builtin_data,
free);
if (state_ == kStateInvokableAndImmutable) {
ReportError("AddNodeWithParameters is disallowed when graph is immutable.");
return kTfLiteError;
}
state_ = kStateUninvokable;
TF_LITE_ENSURE_OK(&context_, CheckTensorIndices("node inputs", inputs.data(),
inputs.size()));
TF_LITE_ENSURE_OK(
&context_,
CheckTensorIndices("node outputs", outputs.data(), outputs.size()));
int new_node_index = nodes_and_registration_.size();
if (node_index) *node_index = new_node_index;
nodes_and_registration_.resize(nodes_and_registration_.size() + 1);
auto& node_and_reg = nodes_and_registration_.back();
TfLiteNode& node = node_and_reg.first;
if (node.inputs) TfLiteIntArrayFree(node.inputs);
if (node.outputs) TfLiteIntArrayFree(node.outputs);
if (node.intermediates) TfLiteIntArrayFree(node.intermediates);
if (node.temporaries) TfLiteIntArrayFree(node.temporaries);
// NOTE, here we are not using move semantics yet, since our internal
// representation isn't std::vector, but in the future we would like to avoid
// copies, so we want the interface to take r-value references now.
node.inputs = ConvertVectorToTfLiteIntArray(inputs);
node.outputs = ConvertVectorToTfLiteIntArray(outputs);
node.intermediates = ConvertVectorToTfLiteIntArray(intermediates);
node.temporaries = TfLiteIntArrayCreate(0);
if (init_data) {
node.user_data = OpInit(*registration, init_data, init_data_size);
} else {
node.user_data = OpInit(
*registration, static_cast<const char*>(builtin_data_deleter.get()), 0);
}
node.builtin_data = builtin_data_deleter.release();
// TODO(ycling): Filling `custom_initial_data` and `custom_initial_data_size`
// properly for nodes generated by ReplaceNodeSubsetsWithDelegateKernels.
if (registration->builtin_code == BuiltinOperator_CUSTOM) {
// When it's a CUSTOM op, the `custom_options` field in the Flatbuffer
// `Operator` table is passed in.
node.custom_initial_data = init_data;
node.custom_initial_data_size = init_data_size;
} else {
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
}
node.delegate = nullptr;
// Copying of registration is required to support unresolved custom ops.
node_and_reg.second = *registration;
execution_plan_.push_back(new_node_index);
return kTfLiteOk;
}
TfLiteStatus Subgraph::ResizeInputTensor(int tensor_index,
const std::vector<int>& dims) {
const bool delegates_applied = !pre_delegation_execution_plan_.empty();
const bool graph_is_immutable = state_ == kStateInvokableAndImmutable;
if (graph_is_immutable && !delegates_applied) {
ReportError("ResizeInputTensor is disallowed when graph is immutable.");
return kTfLiteError;
}
// TODO(aselle): All bounds checks can be implemented as one-sided bounds
// checks by casting to unsigned for efficiency. Profile before doing this.
TF_LITE_ENSURE(&context_,
tensor_index < context_.tensors_size && tensor_index >= 0);
TfLiteTensor* tensor = &context_.tensors[tensor_index];
// Short-circuit the state change if the dimensions don't change, avoiding
// unnecessary (re)allocations.
//
// Note that it's required to check `tensor->data.raw != nullptr`. Otherwise
// the subgraph won't allocate memory for a dynamic tensor when its size
// is equal to the original tensor size.
if (tensor->data.raw != nullptr &&
EqualArrayAndTfLiteIntArray(tensor->dims, dims.size(), dims.data())) {
return kTfLiteOk;
}
if (graph_is_immutable) {
// Undo delegation if it resulted in the graph being immutable.
TF_LITE_ENSURE_STATUS(UndoAllDelegates());
}
state_ = kStateUninvokable;
return ResizeTensorImpl(tensor, ConvertVectorToTfLiteIntArray(dims));
}
TfLiteStatus Subgraph::ResizeInputTensorStrict(int tensor_index,
const std::vector<int>& dims) {
TF_LITE_ENSURE(&context_,
tensor_index < context_.tensors_size && tensor_index >= 0);
TfLiteTensor* tensor = &context_.tensors[tensor_index];
// Ensure that only unknown dimensions can be resized.
TF_LITE_ENSURE_EQ(&context_, tensor->dims->size, dims.size());
for (size_t idx = 0; idx < dims.size(); idx++) {
// `dims_signature` is not defined when no unknown dimensions are present.
int dim_signature;
if (tensor->dims_signature && tensor->dims_signature->size) {
dim_signature = tensor->dims_signature->data[idx];
} else {
dim_signature = tensor->dims->data[idx];
}
if (dim_signature != -1 && dim_signature != dims[idx]) {
ReportError(
"Attempting to resize dimension %d of tensor %d with value %d to %d. "
"ResizeInputTensorStrict only allows mutating unknown dimensions "
"identified by -1.",
idx, tensor_index, dim_signature, dims[idx]);
return kTfLiteError;
}
}
return ResizeInputTensor(tensor_index, dims);
}
TfLiteStatus Subgraph::ReleaseNonPersistentMemory() {
if (memory_planner_) {
TF_LITE_ENSURE_STATUS(memory_planner_->ReleaseNonPersistentMemory());
}
return kTfLiteOk;
}
TfLiteStatus Subgraph::OpPrepare(const TfLiteRegistration& op_reg,
TfLiteNode* node) {
if (op_reg.prepare == nullptr) {
// Check if it's an unresolved custom op.
if (IsUnresolvedCustomOp(op_reg)) {
if (IsFlexOp(op_reg.custom_name)) {
ReportError(
"Regular TensorFlow ops are not supported by this interpreter. "
"Make sure you apply/link the Flex delegate before inference.");
} else {
ReportError("Encountered unresolved custom op: %s.",
op_reg.custom_name ? op_reg.custom_name : "UnknownOp");
}
return kTfLiteError;
}
// Resolved ops can have a null Prepare function.
return kTfLiteOk;
}
return op_reg.prepare(&context_, node);
}
TfLiteStatus Subgraph::PrepareOpsStartingAt(
int first_execution_plan_index, int* last_execution_plan_index_prepared) {
if (first_execution_plan_index == 0) {
has_dynamic_tensors_ = false;
}
for (int execution_plan_index = first_execution_plan_index;
execution_plan_index < execution_plan_.size(); execution_plan_index++) {
int node_index = execution_plan_[execution_plan_index];
TfLiteNode& node = nodes_and_registration_[node_index].first;
const TfLiteRegistration& registration =
nodes_and_registration_[node_index].second;
EnsureTensorsVectorCapacity();
if (OpPrepare(registration, &node) != kTfLiteOk) {
return ReportOpError(&context_, node, registration, node_index,
"failed to prepare");
}
*last_execution_plan_index_prepared = execution_plan_index;
// Discontinue if the node has dynamic outputs. Note that we don't
// stop for dynamic temporary tensors since they won't affect the
// sizes of other tensors in the graph.
if (HasDynamicTensor(context_, node.outputs)) {
has_dynamic_tensors_ = true;
return kTfLiteOk;
}
}
return kTfLiteOk;
}
TfLiteStatus Subgraph::PrepareOpsAndTensors() {
if (!memory_planner_) {
memory_planner_.reset(new ArenaPlanner(
&context_, std::unique_ptr<GraphInfo>(new InterpreterInfo(this)),
/*preserve_inputs=*/true, /*preserve_intermediates*/ false));
memory_planner_->PlanAllocations();
}
int last_exec_plan_index_prepared = 0;
TF_LITE_ENSURE_STATUS(PrepareOpsStartingAt(
next_execution_plan_index_to_prepare_, &last_exec_plan_index_prepared));
next_execution_plan_index_to_prepare_ = last_exec_plan_index_prepared + 1;
TF_LITE_ENSURE_STATUS(memory_planner_->ExecuteAllocations(
next_execution_plan_index_to_plan_allocation_,
last_exec_plan_index_prepared));
next_execution_plan_index_to_plan_allocation_ =
last_exec_plan_index_prepared + 1;
return kTfLiteOk;
}
TfLiteStatus Subgraph::Invoke() {
if (!consistent_) {
ReportError("Invoke called on model that is not consistent.");
return kTfLiteError;
}
TfLiteStatus status = kTfLiteOk;
if (state_ == kStateUninvokable) {
ReportError("Invoke called on model that is not ready.");
return kTfLiteError;
} else if (memory_planner_ && !memory_planner_->HasNonPersistentMemory()) {
ReportError("Non-persistent memory is not available.");
return kTfLiteError;
}
// This is only needed for UseNNAPI(true);
if (should_apply_nnapi_delegate_ && !applied_nnapi_delegate_) {
TF_LITE_ENSURE_OK(&context_, ModifyGraphWithDelegate(NnApiDelegate()));
// only need to modify the graph once upon the first invocation.
applied_nnapi_delegate_ = true;
}
// Invocations are always done in node order.
// Note that calling Invoke repeatedly will cause the original memory plan to
// be reused, unless either ResizeInputTensor() or AllocateTensors() has been
// called.
for (int execution_plan_index = 0;
execution_plan_index < execution_plan_.size(); execution_plan_index++) {
if (execution_plan_index == next_execution_plan_index_to_prepare_) {
TF_LITE_ENSURE_STATUS(PrepareOpsAndTensors());
TF_LITE_ENSURE(&context_, next_execution_plan_index_to_prepare_ >=
execution_plan_index);
}
int node_index = execution_plan_[execution_plan_index];
TfLiteNode& node = nodes_and_registration_[node_index].first;
const TfLiteRegistration& registration =
nodes_and_registration_[node_index].second;
const char* op_name = nullptr;
if (profiler_) op_name = GetTFLiteOpName(registration);
TFLITE_SCOPED_TAGGED_OPERATOR_PROFILE(profiler_.get(), op_name, node_index);
// TODO(ycling): This is an extra loop through inputs to check if the data
// need to be copied from Delegate buffer to raw memory, which is often not
// needed. We may want to cache this in prepare to know if this needs to be
// done for a node or not.
for (int i = 0; i < node.inputs->size; ++i) {
int tensor_index = node.inputs->data[i];
if (tensor_index == kTfLiteOptionalTensor) {
continue;
}
TfLiteTensor* tensor = &tensors_[tensor_index];
if (tensor->delegate && tensor->delegate != node.delegate &&
tensor->data_is_stale) {
TF_LITE_ENSURE_STATUS(EnsureTensorDataIsReadable(tensor_index));
}
}
if (check_cancelled_func_ != nullptr &&
check_cancelled_func_(cancellation_data_)) {
ReportError("Client requested cancel during Invoke()");
return kTfLiteError;
}
EnsureTensorsVectorCapacity();
tensor_resized_since_op_invoke_ = false;
if (OpInvoke(registration, &node) != kTfLiteOk) {
return ReportOpError(&context_, node, registration, node_index,
"failed to invoke");
}
// Force execution prep for downstream ops if the latest op triggered the
// resize of a dynamic tensor.
if (tensor_resized_since_op_invoke_ &&
HasDynamicTensor(context_, node.outputs)) {
next_execution_plan_index_to_prepare_ = execution_plan_index + 1;
// This happens when an intermediate dynamic tensor is resized.
// We don't have to prepare all the ops, but we need to recompute
// the allocation plan.
if (next_execution_plan_index_to_plan_allocation_ >
next_execution_plan_index_to_prepare_) {
next_execution_plan_index_to_plan_allocation_ =
next_execution_plan_index_to_prepare_;
if (memory_planner_) {
TF_LITE_ENSURE_STATUS(memory_planner_->ResetAllocationsAfter(
next_execution_plan_index_to_plan_allocation_ - 1));
}
}
}
}
return status;
}
TfLiteStatus Subgraph::ResizeTensor(TfLiteContext* context,
TfLiteTensor* tensor,
TfLiteIntArray* new_size) {
// If the dimensions don't change, avoiding
// unnecessary (re)allocations.
//
// Note that it's required to check `tensor->data.raw != nullptr`. Otherwise
// the subgraph won't allocate memory for a dynamic tensor when its size
// is equal to the original tensor size.
if (tensor->data.raw != nullptr &&
EqualArrayAndTfLiteIntArray(tensor->dims, new_size->size,
new_size->data)) {
// A number of clients assume |new_size| remains valid upon success, so
// swap it in as the new (but logically identical) tensor dims.
TfLiteIntArrayFree(tensor->dims);
tensor->dims = new_size;
return kTfLiteOk;
}
// Note here that context->impl_ is recovering the this pointer for an
// instance of Interpreter to call into the member function ResizeTensorImpl
// (this function is static).
return static_cast<Subgraph*>(context->impl_)
->ResizeTensorImpl(tensor, new_size);
}
void Subgraph::ReportErrorImpl(const char* format, va_list args) {
error_reporter_->Report(format, args);
}
void Subgraph::ReportErrorC(TfLiteContext* context, const char* format, ...) {
va_list args;
va_start(args, format);
auto* f = static_cast<Subgraph*>(context->impl_);
// Note here that context->impl_ is recovering the this pointer for an
// instance of Subgraph to call into the member function ReportErrorImpl
// (this function is static).
f->ReportErrorImpl(format, args);
va_end(args);
}
// Entry point for C node plugin API to report an error.
void Subgraph::ReportError(const char* format, ...) {
va_list args;
va_start(args, format);
auto* f = static_cast<Subgraph*>(context_.impl_);
// Note here that context->impl_ is recovering the this pointer for an
// instance of Subgraph to call into the member function ReportErrorImpl
// (this function is static).
f->ReportErrorImpl(format, args);
va_end(args);
}
TfLiteStatus Subgraph::AddTensors(int tensors_to_add,
int* first_new_tensor_index) {
const size_t base_index = tensors_.size();
if (first_new_tensor_index) *first_new_tensor_index = base_index;
tensors_.resize(tensors_.size() + tensors_to_add);
for (size_t i = base_index; i < tensors_.size(); i++) {
memset(&tensors_[i], 0, sizeof(tensors_[i]));
tensors_[i].buffer_handle = kTfLiteNullBufferHandle;
}
context_.tensors = tensors_.data();
context_.tensors_size = tensors_.size();
return kTfLiteOk;
}
TfLiteStatus Subgraph::AddTensors(TfLiteContext* context, int tensors_to_add,
int* first_new_tensor_index) {
// Note here that context->impl_ is recovering the this pointer for an
// instance of Interpreter to call into the member function AddTensors
// (this function is static).
return static_cast<Subgraph*>(context->impl_)
->AddTensors(tensors_to_add, first_new_tensor_index);
}
TfLiteStatus Subgraph::GetNodeAndRegistration(
int node_index, TfLiteNode** node, TfLiteRegistration** registration) {
TF_LITE_ENSURE(&context_, node_index >= 0);
auto nodes_size = nodes_and_registration_.size();
TF_LITE_ENSURE(&context_, static_cast<size_t>(node_index) < nodes_size);
TF_LITE_ENSURE(&context_, node != nullptr && registration != nullptr);
auto& node_and_reg = nodes_and_registration_[node_index];
*node = &node_and_reg.first;
*registration = &node_and_reg.second;
return kTfLiteOk;
}
TfLiteStatus Subgraph::GetNodeAndRegistration(
struct TfLiteContext* context, int node_index, TfLiteNode** node,
TfLiteRegistration** registration) {
return static_cast<Subgraph*>(context->impl_)
->GetNodeAndRegistration(node_index, node, registration);
}
TfLiteStatus Subgraph::SetTensorParametersReadOnly(
int tensor_index, TfLiteType type, const char* name, const size_t rank,
const int* dims, TfLiteQuantization quantization, const char* buffer,
size_t bytes, const Allocation* allocation, TfLiteSparsity* sparsity) {
// Ensure quantization cleanup on failure.
ScopedTfLiteQuantization scoped_quantization(&quantization);
ScopedTfLiteSparsity scoped_sparsity(sparsity);
if (state_ == kStateInvokableAndImmutable) {
ReportError(
"SetTensorParametersReadOnly is disallowed when graph is immutable.");
return kTfLiteError;
}
TF_LITE_ENSURE(&context_,
tensor_index < context_.tensors_size && tensor_index >= 0);
// For most tensors we know exactly how much memory is necessary so we can
// ensure the buffer is large enough. However, we need to skip string tensors
// and sparse tensors because their sizes change with the contents.
// TODO(b/145615516): Extend BytesRequired to check sparse tensors.
if (type != kTfLiteString && sparsity == nullptr) {
size_t required_bytes;
TF_LITE_ENSURE_OK(&context_,
BytesRequired(type, dims, rank, &required_bytes));
TF_LITE_ENSURE_EQ(&context_, required_bytes, bytes);
}
TfLiteTensor& tensor = context_.tensors[tensor_index];
if (type == tensor.type &&
EqualArrayAndTfLiteIntArray(tensor.dims, rank, dims)) {
// Fast path which does not invalidate the invokable property.
TfLiteTensorDataFree(&tensor);
TfLiteQuantizationFree(&tensor.quantization);
tensor.data.raw = const_cast<char*>(buffer);
if (!tensor.dims) tensor.dims = ConvertArrayToTfLiteIntArray(rank, dims);
tensor.params = GetLegacyQuantization(quantization);
tensor.quantization = *scoped_quantization.release();
tensor.sparsity = scoped_sparsity.release();
tensor.allocation_type = kTfLiteMmapRo;
tensor.allocation = allocation;
} else {
state_ = kStateUninvokable;
TfLiteTensorReset(type, name, ConvertArrayToTfLiteIntArray(rank, dims),
GetLegacyQuantization(quantization),
const_cast<char*>(buffer), bytes, kTfLiteMmapRo,
allocation, false, &tensor);
// TODO(suharshs): Update TfLiteTensorReset to include the new quantization
// if there are other required callers.
tensor.quantization = *scoped_quantization.release();
tensor.sparsity = scoped_sparsity.release();
}
return kTfLiteOk;
}
// Set description of inputs/outputs/data/fptrs for node `node_index`.
// This variant assumes an external buffer has been allocated of size
// bytes. The lifetime of buffer must be ensured to be greater or equal
// to Interpreter.
TfLiteStatus Subgraph::SetTensorParametersReadWrite(
int tensor_index, TfLiteType type, const char* name, const size_t rank,
const int* dims, TfLiteQuantization quantization, bool is_variable,
const size_t rank_dims_signature, const int* dims_signature) {
// Ensure quantization cleanup on failure.
ScopedTfLiteQuantization scoped_quantization(&quantization);
if (state_ == kStateInvokableAndImmutable) {
ReportError(
"SetTensorParametersReadWrite is disallowed when graph is immutable.");
return kTfLiteError;
}
TF_LITE_ENSURE(&context_,
tensor_index < context_.tensors_size && tensor_index >= 0);
size_t required_bytes = 0;
if (type != kTfLiteString) {
// These types will be allocated in our arena so we need to record how
// many bytes we will need based on the dimensions. String tensors are
// allocated dynamically and we can't know ahead of time how much space
// they will require.
TF_LITE_ENSURE_OK(&context_,
BytesRequired(type, dims, rank, &required_bytes));
}
TfLiteAllocationType allocation_type = kTfLiteArenaRw;
if (type == kTfLiteString) {
if (is_variable) {
// We don't have a real use case for string variable tensor.
ReportError("String variable tensor isn't supported.");
return kTfLiteError;
}
allocation_type = kTfLiteDynamic;
} else if (is_variable) {
allocation_type = kTfLiteArenaRwPersistent;
}
TfLiteTensor& tensor = context_.tensors[tensor_index];
TfLiteTensorReset(type, name, ConvertArrayToTfLiteIntArray(rank, dims),
GetLegacyQuantization(quantization),
/*buffer=*/nullptr, required_bytes, allocation_type,
nullptr, is_variable, &tensor);
// TODO(suharshs): Update TfLiteTensorReset to include the new quantization
// if there are other required callers.
tensor.quantization = *scoped_quantization.release();
tensor.dims_signature =
ConvertArrayToTfLiteIntArray(rank_dims_signature, dims_signature);
return kTfLiteOk;
}
TfLiteStatus Subgraph::SetExecutionPlan(const std::vector<int>& new_plan) {
for (int node_index : new_plan) {
TF_LITE_ENSURE(&context_, node_index >= 0 &&
node_index < nodes_and_registration_.size());
}
execution_plan_ = new_plan;
return kTfLiteOk;
}
TfLiteStatus Subgraph::ResizeTensorImpl(TfLiteTensor* tensor,
TfLiteIntArray* new_size) {
// Note that in theory we could resize kTfLiteArenaRwPersistent tensors too.
if (tensor->allocation_type == kTfLiteArenaRw ||
tensor->allocation_type == kTfLiteDynamic ||
tensor->allocation_type == kTfLiteArenaRwPersistent ||
tensor->allocation_type == kTfLitePersistentRo) {
tensor_resized_since_op_invoke_ |=
TfLiteIntArrayEqual(tensor->dims, new_size) == 0;
if (tensor->type != kTfLiteString) {
size_t bytesRequired;
TfLiteStatus status = BytesRequired(tensor->type, new_size->data,
new_size->size, &bytesRequired);
if (status != kTfLiteOk) {
TfLiteIntArrayFree(new_size);
return kTfLiteError;
}
// Realloc space for heap-allocated tensors.
TfLiteTensorRealloc(bytesRequired, tensor);
tensor->bytes = bytesRequired;
}
if (tensor->dims) TfLiteIntArrayFree(tensor->dims);
tensor->dims = new_size;
// Reset arena-allocated tensors; they will be allocated later.
if (tensor->allocation_type == kTfLiteArenaRw ||
tensor->allocation_type == kTfLiteArenaRwPersistent) {
tensor->data.raw = nullptr;
}
} else {
// kTfLiteMmapRo tensors are stored in the flatbuffer and are therefore
// of fixed size.
TfLiteIntArrayFree(new_size);
ReportError("Attempting to resize a fixed-size tensor.");
return kTfLiteError;
}
return kTfLiteOk;
}
void Subgraph::UseNNAPI(bool enable) {
// Note that there is no way to disable the delegate once it modified the
// graph.
if (applied_nnapi_delegate_ && !enable) {
ReportError("Attempting to disable NNAPI delegate after it's applied.");
} else {
should_apply_nnapi_delegate_ = enable;
}
}
void Subgraph::SwitchToDelegateContext() {
context_.GetNodeAndRegistration = GetNodeAndRegistration;
context_.ReplaceNodeSubsetsWithDelegateKernels =
ReplaceNodeSubsetsWithDelegateKernels;
context_.GetExecutionPlan = GetExecutionPlan;
context_.PreviewDelegatePartitioning = PreviewDelegatePartitioning;
}
void Subgraph::SwitchToKernelContext() {
context_.GetNodeAndRegistration = [](struct TfLiteContext* context,
int node_index, TfLiteNode** node,
TfLiteRegistration** registration) {
return ForbiddenContextFunction(context);
};
context_.ReplaceNodeSubsetsWithDelegateKernels =
[](TfLiteContext* context, TfLiteRegistration registration,
const TfLiteIntArray* nodes_to_replace, TfLiteDelegate* delegate) {
return ForbiddenContextFunction(context);
};
context_.GetExecutionPlan = [](struct TfLiteContext* context,
TfLiteIntArray**) {
return ForbiddenContextFunction(context);
};
context_.PreviewDelegatePartitioning =
[](struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace,
TfLiteDelegateParams** partition_params_array,
int* num_partitions) { return ForbiddenContextFunction(context); };
// Free any memory that might have been allocated by
// PreviewDelegatePartitioning.
FreeDelegatePartitioningData();
}
TfLiteStatus Subgraph::UndoAllDelegates() {
// Return early if there is nothing to reset to.
if (pre_delegation_execution_plan_.empty()) return kTfLiteOk;
// First free all delegate nodes.
for (int execution_plan_index = 0;
execution_plan_index < execution_plan_.size(); ++execution_plan_index) {
int node_index = execution_plan_[execution_plan_index];
TfLiteNode& node = nodes_and_registration_[node_index].first;
if (node.delegate == nullptr) {
continue;
}
CleanupNode(node_index);
}
// Reset execution plan.
execution_plan_ = pre_delegation_execution_plan_;
pre_delegation_execution_plan_.clear();
// Delegate nodes are appended to nodes_and_registration_. Therefore,
// cleanup nodes_and_registration_ to only contain nodes from
// pre_delegation_execution_plan_.
int max_retained_node_index = 0;
for (int execution_plan_index = 0;
execution_plan_index < execution_plan_.size(); ++execution_plan_index) {
max_retained_node_index = std::max(max_retained_node_index,
execution_plan_[execution_plan_index]);
}
nodes_and_registration_.resize(max_retained_node_index + 1);
// After undoing delegates, the graph is uninvokable, but mutable.
state_ = kStateUninvokable;
delegates_undone_ = true;
return kTfLiteOk;
}
TfLiteStatus Subgraph::RedoAllDelegates() {
if (!delegates_undone_) return kTfLiteOk;
delegates_undone_ = false;
std::vector<TfLiteDelegate*> delegates_to_apply;
delegates_applied_.swap(delegates_to_apply);
for (auto* delegate : delegates_to_apply) {
TF_LITE_ENSURE_STATUS(ModifyGraphWithDelegate(delegate));
}
return kTfLiteOk;
}
TfLiteStatus Subgraph::RemoveAllDelegates() {
TF_LITE_ENSURE_STATUS(UndoAllDelegates());
delegates_applied_.clear();
delegates_undone_ = false;
TF_LITE_ENSURE_STATUS(EnsureMemoryAllocations());
return kTfLiteOk;
}
bool Subgraph::HasDelegates() { return !delegates_applied_.empty(); }
void Subgraph::EnsureTensorsVectorCapacity() {
const size_t required_capacity = tensors_.size() + kTensorsCapacityHeadroom;
if (required_capacity > tensors_.capacity()) {
// Whenever it's required to increase the vector capacity, make it at
// least twice bigger. The behavior is consistent with the default
// behavior of GCC STL's `std::vector::resize()`. This avoids frequently
// allocating and copying the underlying buffer.
size_t reserved_capacity =
std::max(required_capacity, tensors_.capacity() * 2);
tensors_.reserve(reserved_capacity);
context_.tensors = tensors_.data();
}
}
TfLiteStatus Subgraph::EnsureMemoryAllocations() {
if (memory_planner_) {
state_ = kStateUninvokable;
TF_LITE_ENSURE_OK(&context_, memory_planner_->PlanAllocations());
}
TF_LITE_ENSURE_OK(&context_, AllocateTensors());
TF_LITE_ENSURE_EQ(&context_, state_, kStateInvokable);
return kTfLiteOk;
}
TfLiteStatus Subgraph::ModifyGraphWithDelegate(TfLiteDelegate* delegate) {
TFLITE_SCOPED_TAGGED_DEFAULT_PROFILE(profiler_.get(),
"ModifyGraphWithDelegate");
// Restore delegation state if applicable.
TF_LITE_ENSURE_STATUS(RedoAllDelegates());
if (state_ == kStateInvokableAndImmutable) {
ReportError(
"ModifyGraphWithDelegate is disallowed when graph is immutable.");
return kTfLiteError;
}
if (!(delegate->flags & kTfLiteDelegateFlagsAllowDynamicTensors)) {
int last_execution_plan_index_prepared;
TF_LITE_ENSURE_OK(&context_, PrepareOpsStartingAt(
0, &last_execution_plan_index_prepared));
if (has_dynamic_tensors_) {
// Make sure that we are in a defined ready state before returning.
// Plan and allocate tensors before returning.
TF_LITE_ENSURE_OK(&context_, EnsureMemoryAllocations());
ReportError(
"Attempting to use a delegate that only supports static-sized "
"tensors with a graph that has dynamic-sized tensors.");
return kTfLiteError;
}
}
const bool was_invokable_before_delegate = state_ == kStateInvokable;
if (delegates_applied_.empty()) {
// This is the first delegate being applied, so remember original execution
// plan.
// TODO(b/119623453): Restore execution plan to this state if delegate
// application fails.
pre_delegation_execution_plan_ = execution_plan_;
}
// TODO(aselle): Consider if it is worth storing pointers to delegates.
// Setup additional context interface.
SwitchToDelegateContext();
auto reset_delegation_if_not_ok = [this](TfLiteStatus status) {
if (status != kTfLiteOk) {
TF_LITE_ENSURE_STATUS(RemoveAllDelegates());
ReportError(
"Restored original execution plan after delegate application "
"failure.");
return kTfLiteDelegateError;
}
return kTfLiteOk;
};
TfLiteStatus status = delegate->Prepare(&context_, delegate);
// Remove additional context info.
SwitchToKernelContext();
TF_LITE_ENSURE_STATUS(reset_delegation_if_not_ok(status));
if (!(delegate->flags & kTfLiteDelegateFlagsAllowDynamicTensors)) {
// Reset the state to force tensor/op reallocation.
state_ = kStateUninvokable;
TF_LITE_ENSURE_STATUS(
reset_delegation_if_not_ok(EnsureMemoryAllocations()));
// After using a delegate which doesn't support dynamic tensors, make the
// entire graph immutable.
state_ = kStateInvokableAndImmutable;
} else if (was_invokable_before_delegate) {
// If the graph was invokable prior to delegate application, flush
// allocation now to leave it in a consistent state.
TF_LITE_ENSURE_STATUS(
reset_delegation_if_not_ok(EnsureMemoryAllocations()));
}
delegates_applied_.push_back(delegate);
return status;
}
} // namespace impl
} // namespace tflite