This change uses the existing micro-specific build flag (TF_LITE_STATIC_MEMORY) to reduce the size of TfLiteTensor. In this build setting, only the minimum number of fields required for preparing and initializing a model in TFLM are used. This build define is opt-in only for internal builds and continues to be enabled by default in Makefile builds./ All TFLM internal targets can be built with this flag by adding '--copt=-DTF_LITE_STATIC_MEMORY'. This change reduces the sizeof(TfLiteTensor) to 64 bytes (64bit systems) down from 112 bytes (64 bit systems). TfLiteTensor struct reduced by 1.75x (~43% reduction) Tail allocation reduced by: 2,592kb (~12.5% reduction) Total allocation reduced by: 2,592kb (~12% reduction) Optimized results from memory_arena_threshold_test: Keyword Model: -------------- [RecordingMicroAllocator] Arena allocation total 18448 bytes [RecordingMicroAllocator] Arena allocation head 672 bytes [RecordingMicroAllocator] Arena allocation tail 17776 bytes [RecordingMicroAllocator] 'TfLiteTensor struct' used 3456 bytes with alignment overhead (requested 3456 bytes for 54 tensors) [RecordingMicroAllocator] 'TfLiteTensor quantization data' used 1728 bytes with alignment overhead (requested 1728 bytes for 108 allocations) [RecordingMicroAllocator] 'TfLiteTensor variable buffer data' used 10240 bytes with alignment overhead (requested 10240 bytes for 7 allocations) [RecordingMicroAllocator] 'NodeAndRegistration struct' used 1200 bytes with alignment overhead (requested 1200 bytes for 15 NodeAndRegistration structs) [RecordingMicroAllocator] 'Operator runtime data' used 148 bytes with alignment overhead (requested 148 bytes for 13 OpData structs) Test Conv Model: ---------------- [RecordingMicroAllocator] Arena allocation total 10960 bytes [RecordingMicroAllocator] Arena allocation head 7744 bytes [RecordingMicroAllocator] Arena allocation tail 3216 bytes [RecordingMicroAllocator] 'TfLiteTensor struct' used 960 bytes with alignment overhead (requested 960 bytes for 15 tensors) [RecordingMicroAllocator] 'TfLiteTensor quantization data' used 768 bytes with alignment overhead (requested 752 bytes for 24 allocations) [RecordingMicroAllocator] 'TfLiteTensor variable buffer data' used 0 bytes with alignment overhead (requested 0 bytes for 0 allocations) [RecordingMicroAllocator] 'NodeAndRegistration struct' used 560 bytes with alignment overhead (requested 560 bytes for 7 NodeAndRegistration structs) [RecordingMicroAllocator] 'Operator runtime data' used 136 bytes with alignment overhead (requested 136 bytes for 5 OpData structs) PiperOrigin-RevId: 317335359 Change-Id: Ic3d4d2c3e62249f072ece8f621f9ef94eaa28589
829 lines
34 KiB
C
829 lines
34 KiB
C
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
// This file defines common C types and APIs for implementing operations,
|
|
// delegates and other constructs in TensorFlow Lite. The actual operations and
|
|
// delegates can be defined using C++, but the interface between the interpreter
|
|
// and the operations are C.
|
|
//
|
|
// Summary of abstractions
|
|
// TF_LITE_ENSURE - Self-sufficient error checking
|
|
// TfLiteStatus - Status reporting
|
|
// TfLiteIntArray - stores tensor shapes (dims),
|
|
// TfLiteContext - allows an op to access the tensors
|
|
// TfLiteTensor - tensor (a multidimensional array)
|
|
// TfLiteNode - a single node or operation
|
|
// TfLiteRegistration - the implementation of a conceptual operation.
|
|
// TfLiteDelegate - allows delegation of nodes to alternative backends.
|
|
//
|
|
// Some abstractions in this file are created and managed by Interpreter.
|
|
//
|
|
// NOTE: The order of values in these structs are "semi-ABI stable". New values
|
|
// should be added only to the end of structs and never reordered.
|
|
|
|
#ifndef TENSORFLOW_LITE_C_COMMON_H_
|
|
#define TENSORFLOW_LITE_C_COMMON_H_
|
|
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif // __cplusplus
|
|
|
|
typedef enum TfLiteStatus {
|
|
kTfLiteOk = 0,
|
|
kTfLiteError = 1,
|
|
kTfLiteDelegateError = 2
|
|
} TfLiteStatus;
|
|
|
|
// The list of external context types known to TF Lite. This list exists solely
|
|
// to avoid conflicts and to ensure ops can share the external contexts they
|
|
// need. Access to the external contexts is controlled by one of the
|
|
// corresponding support files.
|
|
typedef enum TfLiteExternalContextType {
|
|
kTfLiteEigenContext = 0, // include eigen_support.h to use.
|
|
kTfLiteGemmLowpContext = 1, // include gemm_support.h to use.
|
|
kTfLiteEdgeTpuContext = 2, // Placeholder for Edge TPU support.
|
|
kTfLiteCpuBackendContext = 3, // include cpu_backend_context.h to use.
|
|
kTfLiteMaxExternalContexts = 4
|
|
} TfLiteExternalContextType;
|
|
|
|
// Forward declare so dependent structs and methods can reference these types
|
|
// prior to the struct definitions.
|
|
struct TfLiteContext;
|
|
struct TfLiteDelegate;
|
|
struct TfLiteRegistration;
|
|
|
|
// An external context is a collection of information unrelated to the TF Lite
|
|
// framework, but useful to a subset of the ops. TF Lite knows very little
|
|
// about about the actual contexts, but it keeps a list of them, and is able to
|
|
// refresh them if configurations like the number of recommended threads
|
|
// change.
|
|
typedef struct TfLiteExternalContext {
|
|
TfLiteExternalContextType type;
|
|
TfLiteStatus (*Refresh)(struct TfLiteContext* context);
|
|
} TfLiteExternalContext;
|
|
|
|
#define kTfLiteOptionalTensor (-1)
|
|
|
|
// Fixed size list of integers. Used for dimensions and inputs/outputs tensor
|
|
// indices
|
|
typedef struct TfLiteIntArray {
|
|
int size;
|
|
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
|
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
|
#if (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
|
__GNUC_MINOR__ >= 1) || \
|
|
defined(HEXAGON)
|
|
int data[0];
|
|
#else
|
|
int data[];
|
|
#endif
|
|
} TfLiteIntArray;
|
|
|
|
// Given the size (number of elements) in a TfLiteIntArray, calculate its size
|
|
// in bytes.
|
|
int TfLiteIntArrayGetSizeInBytes(int size);
|
|
|
|
#ifndef TF_LITE_STATIC_MEMORY
|
|
// Create a array of a given `size` (uninitialized entries).
|
|
// This returns a pointer, that you must free using TfLiteIntArrayFree().
|
|
TfLiteIntArray* TfLiteIntArrayCreate(int size);
|
|
#endif
|
|
|
|
// Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise.
|
|
int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b);
|
|
|
|
// Check if an intarray equals an array. Returns 1 if equals, 0 otherwise.
|
|
int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
|
|
const int b_data[]);
|
|
|
|
#ifndef TF_LITE_STATIC_MEMORY
|
|
// Create a copy of an array passed as `src`.
|
|
// You are expected to free memory with TfLiteIntArrayFree
|
|
TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src);
|
|
|
|
// Free memory of array `a`.
|
|
void TfLiteIntArrayFree(TfLiteIntArray* a);
|
|
#endif // TF_LITE_STATIC_MEMORY
|
|
|
|
// Fixed size list of floats. Used for per-channel quantization.
|
|
typedef struct TfLiteFloatArray {
|
|
int size;
|
|
// gcc 6.1+ have a bug where flexible members aren't properly handled
|
|
// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c
|
|
// This also applies to the toolchain used for Qualcomm Hexagon DSPs.
|
|
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \
|
|
__GNUC_MINOR__ >= 1
|
|
float data[0];
|
|
#else
|
|
float data[];
|
|
#endif
|
|
} TfLiteFloatArray;
|
|
|
|
// Given the size (number of elements) in a TfLiteFloatArray, calculate its size
|
|
// in bytes.
|
|
int TfLiteFloatArrayGetSizeInBytes(int size);
|
|
|
|
#ifndef TF_LITE_STATIC_MEMORY
|
|
// Create a array of a given `size` (uninitialized entries).
|
|
// This returns a pointer, that you must free using TfLiteFloatArrayFree().
|
|
TfLiteFloatArray* TfLiteFloatArrayCreate(int size);
|
|
|
|
// Free memory of array `a`.
|
|
void TfLiteFloatArrayFree(TfLiteFloatArray* a);
|
|
#endif // TF_LITE_STATIC_MEMORY
|
|
|
|
// Since we must not depend on any libraries, define a minimal subset of
|
|
// error macros while avoiding names that have pre-conceived meanings like
|
|
// assert and check.
|
|
|
|
// Try to make all reporting calls through TF_LITE_KERNEL_LOG rather than
|
|
// calling the context->ReportError function directly, so that message strings
|
|
// can be stripped out if the binary size needs to be severely optimized.
|
|
#ifndef TF_LITE_STRIP_ERROR_STRINGS
|
|
#define TF_LITE_KERNEL_LOG(context, ...) \
|
|
do { \
|
|
(context)->ReportError((context), __VA_ARGS__); \
|
|
} while (false)
|
|
|
|
#define TF_LITE_MAYBE_KERNEL_LOG(context, ...) \
|
|
do { \
|
|
if ((context) != nullptr) { \
|
|
(context)->ReportError((context), __VA_ARGS__); \
|
|
} \
|
|
} while (false)
|
|
#else // TF_LITE_STRIP_ERROR_STRINGS
|
|
#define TF_LITE_KERNEL_LOG(context, ...)
|
|
#define TF_LITE_MAYBE_KERNEL_LOG(context, ...)
|
|
#endif // TF_LITE_STRIP_ERROR_STRINGS
|
|
|
|
// Check whether value is true, and if not return kTfLiteError from
|
|
// the current function (and report the error string msg).
|
|
#define TF_LITE_ENSURE_MSG(context, value, msg) \
|
|
do { \
|
|
if (!(value)) { \
|
|
TF_LITE_KERNEL_LOG((context), __FILE__ " " msg); \
|
|
return kTfLiteError; \
|
|
} \
|
|
} while (0)
|
|
|
|
// Check whether the value `a` is true, and if not return kTfLiteError from
|
|
// the current function, while also reporting the location of the error.
|
|
#define TF_LITE_ENSURE(context, a) \
|
|
do { \
|
|
if (!(a)) { \
|
|
TF_LITE_KERNEL_LOG((context), "%s:%d %s was not true.", __FILE__, \
|
|
__LINE__, #a); \
|
|
return kTfLiteError; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define TF_LITE_ENSURE_STATUS(a) \
|
|
do { \
|
|
const TfLiteStatus s = (a); \
|
|
if (s != kTfLiteOk) { \
|
|
return s; \
|
|
} \
|
|
} while (0)
|
|
|
|
// Check whether the value `a == b` is true, and if not return kTfLiteError from
|
|
// the current function, while also reporting the location of the error.
|
|
// `a` and `b` may be evaluated more than once, so no side effects or
|
|
// extremely expensive computations should be done.
|
|
// NOTE: Use TF_LITE_ENSURE_TYPES_EQ if comparing TfLiteTypes.
|
|
#define TF_LITE_ENSURE_EQ(context, a, b) \
|
|
do { \
|
|
if ((a) != (b)) { \
|
|
TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%d != %d)", __FILE__, \
|
|
__LINE__, #a, #b, (a), (b)); \
|
|
return kTfLiteError; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define TF_LITE_ENSURE_TYPES_EQ(context, a, b) \
|
|
do { \
|
|
if ((a) != (b)) { \
|
|
TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%s != %s)", __FILE__, \
|
|
__LINE__, #a, #b, TfLiteTypeGetName(a), \
|
|
TfLiteTypeGetName(b)); \
|
|
return kTfLiteError; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define TF_LITE_ENSURE_OK(context, status) \
|
|
do { \
|
|
const TfLiteStatus s = (status); \
|
|
if ((s) != kTfLiteOk) { \
|
|
return s; \
|
|
} \
|
|
} while (0)
|
|
|
|
// Single-precision complex data type compatible with the C99 definition.
|
|
typedef struct TfLiteComplex64 {
|
|
float re, im; // real and imaginary parts, respectively.
|
|
} TfLiteComplex64;
|
|
|
|
// Half precision data type compatible with the C99 definition.
|
|
typedef struct TfLiteFloat16 {
|
|
uint16_t data;
|
|
} TfLiteFloat16;
|
|
|
|
// Types supported by tensor
|
|
typedef enum {
|
|
kTfLiteNoType = 0,
|
|
kTfLiteFloat32 = 1,
|
|
kTfLiteInt32 = 2,
|
|
kTfLiteUInt8 = 3,
|
|
kTfLiteInt64 = 4,
|
|
kTfLiteString = 5,
|
|
kTfLiteBool = 6,
|
|
kTfLiteInt16 = 7,
|
|
kTfLiteComplex64 = 8,
|
|
kTfLiteInt8 = 9,
|
|
kTfLiteFloat16 = 10,
|
|
kTfLiteFloat64 = 11,
|
|
} TfLiteType;
|
|
|
|
// Return the name of a given type, for error reporting purposes.
|
|
const char* TfLiteTypeGetName(TfLiteType type);
|
|
|
|
// SupportedQuantizationTypes.
|
|
typedef enum TfLiteQuantizationType {
|
|
// No quantization.
|
|
kTfLiteNoQuantization = 0,
|
|
// Affine quantization (with support for per-channel quantization).
|
|
// Corresponds to TfLiteAffineQuantization.
|
|
kTfLiteAffineQuantization = 1,
|
|
} TfLiteQuantizationType;
|
|
|
|
// Structure specifying the quantization used by the tensor, if-any.
|
|
typedef struct TfLiteQuantization {
|
|
// The type of quantization held by params.
|
|
TfLiteQuantizationType type;
|
|
// Holds a reference to one of the quantization param structures specified
|
|
// below.
|
|
void* params;
|
|
} TfLiteQuantization;
|
|
|
|
// Legacy. Will be deprecated in favor of TfLiteAffineQuantization.
|
|
// If per-layer quantization is specified this field will still be populated in
|
|
// addition to TfLiteAffineQuantization.
|
|
// Parameters for asymmetric quantization. Quantized values can be converted
|
|
// back to float using:
|
|
// real_value = scale * (quantized_value - zero_point)
|
|
typedef struct TfLiteQuantizationParams {
|
|
float scale;
|
|
int32_t zero_point;
|
|
} TfLiteQuantizationParams;
|
|
|
|
// Parameters for asymmetric quantization across a dimension (i.e per output
|
|
// channel quantization).
|
|
// quantized_dimension specifies which dimension the scales and zero_points
|
|
// correspond to.
|
|
// For a particular value in quantized_dimension, quantized values can be
|
|
// converted back to float using:
|
|
// real_value = scale * (quantized_value - zero_point)
|
|
typedef struct TfLiteAffineQuantization {
|
|
TfLiteFloatArray* scale;
|
|
TfLiteIntArray* zero_point;
|
|
int32_t quantized_dimension;
|
|
} TfLiteAffineQuantization;
|
|
|
|
/* A union of pointers that points to memory for a given tensor. */
|
|
typedef union TfLitePtrUnion {
|
|
/* Do not access these members directly, if possible, use
|
|
* GetTensorData<TYPE>(tensor) instead, otherwise only access .data, as other
|
|
* members are deprecated. */
|
|
int32_t* i32;
|
|
int64_t* i64;
|
|
float* f;
|
|
TfLiteFloat16* f16;
|
|
char* raw;
|
|
const char* raw_const;
|
|
uint8_t* uint8;
|
|
bool* b;
|
|
int16_t* i16;
|
|
TfLiteComplex64* c64;
|
|
int8_t* int8;
|
|
/* Only use this member. */
|
|
void* data;
|
|
} TfLitePtrUnion;
|
|
|
|
// Memory allocation strategies.
|
|
// * kTfLiteMmapRo: Read-only memory-mapped data, or data externally allocated.
|
|
// * kTfLiteArenaRw: Arena allocated with no guarantees about persistence,
|
|
// and available during eval.
|
|
// * kTfLiteArenaRwPersistent: Arena allocated but persistent across eval, and
|
|
// only available during eval.
|
|
// * kTfLiteDynamic: Allocated during eval, or for string tensors.
|
|
// * kTfLitePersistentRo: Allocated and populated during prepare. This is
|
|
// useful for tensors that can be computed during prepare and treated
|
|
// as constant inputs for downstream ops (also in prepare).
|
|
typedef enum TfLiteAllocationType {
|
|
kTfLiteMemNone = 0,
|
|
kTfLiteMmapRo,
|
|
kTfLiteArenaRw,
|
|
kTfLiteArenaRwPersistent,
|
|
kTfLiteDynamic,
|
|
kTfLitePersistentRo,
|
|
} TfLiteAllocationType;
|
|
|
|
// The delegates should use zero or positive integers to represent handles.
|
|
// -1 is reserved from unallocated status.
|
|
typedef int TfLiteBufferHandle;
|
|
enum {
|
|
kTfLiteNullBufferHandle = -1,
|
|
};
|
|
|
|
// Storage format of each dimension in a sparse tensor.
|
|
typedef enum TfLiteDimensionType {
|
|
kTfLiteDimDense = 0,
|
|
kTfLiteDimSparseCSR,
|
|
} TfLiteDimensionType;
|
|
|
|
// Metadata to encode each dimension in a sparse tensor.
|
|
typedef struct TfLiteDimensionMetadata {
|
|
TfLiteDimensionType format;
|
|
int dense_size;
|
|
TfLiteIntArray* array_segments;
|
|
TfLiteIntArray* array_indices;
|
|
} TfLiteDimensionMetadata;
|
|
|
|
// Parameters used to encode a sparse tensor. For detailed explanation of each
|
|
// field please refer to lite/schema/schema.fbs.
|
|
typedef struct TfLiteSparsity {
|
|
TfLiteIntArray* traversal_order;
|
|
TfLiteIntArray* block_map;
|
|
TfLiteDimensionMetadata* dim_metadata;
|
|
int dim_metadata_size;
|
|
} TfLiteSparsity;
|
|
|
|
// An tensor in the interpreter system which is a wrapper around a buffer of
|
|
// data including a dimensionality (or NULL if not currently defined).
|
|
#ifndef TF_LITE_STATIC_MEMORY
|
|
typedef struct TfLiteTensor {
|
|
// The data type specification for data stored in `data`. This affects
|
|
// what member of `data` union should be used.
|
|
TfLiteType type;
|
|
// A union of data pointers. The appropriate type should be used for a typed
|
|
// tensor based on `type`.
|
|
TfLitePtrUnion data;
|
|
// A pointer to a structure representing the dimensionality interpretation
|
|
// that the buffer should have. NOTE: the product of elements of `dims`
|
|
// and the element datatype size should be equal to `bytes` below.
|
|
TfLiteIntArray* dims;
|
|
// Quantization information.
|
|
TfLiteQuantizationParams params;
|
|
// How memory is mapped
|
|
// kTfLiteMmapRo: Memory mapped read only.
|
|
// i.e. weights
|
|
// kTfLiteArenaRw: Arena allocated read write memory
|
|
// (i.e. temporaries, outputs).
|
|
TfLiteAllocationType allocation_type;
|
|
// The number of bytes required to store the data of this Tensor. I.e.
|
|
// (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if
|
|
// type is kTfLiteFloat32 and dims = {3, 2} then
|
|
// bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24.
|
|
size_t bytes;
|
|
|
|
// An opaque pointer to a tflite::MMapAllocation
|
|
const void* allocation;
|
|
|
|
// Null-terminated name of this tensor.
|
|
const char* name;
|
|
|
|
// The delegate which knows how to handle `buffer_handle`.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
struct TfLiteDelegate* delegate;
|
|
|
|
// An integer buffer handle that can be handled by `delegate`.
|
|
// The value is valid only when delegate is not null.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteBufferHandle buffer_handle;
|
|
|
|
// If the delegate uses its own buffer (e.g. GPU memory), the delegate is
|
|
// responsible to set data_is_stale to true.
|
|
// `delegate->CopyFromBufferHandle` can be called to copy the data from
|
|
// delegate buffer.
|
|
// WARNING: This is an // experimental interface that is subject to change.
|
|
bool data_is_stale;
|
|
|
|
// True if the tensor is a variable.
|
|
bool is_variable;
|
|
|
|
// Quantization information. Replaces params field above.
|
|
TfLiteQuantization quantization;
|
|
|
|
// Parameters used to encode a sparse tensor.
|
|
// This is optional. The field is NULL if a tensor is dense.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteSparsity* sparsity;
|
|
|
|
// Optional. Encodes shapes with unknown dimensions with -1. This field is
|
|
// only populated when unknown dimensions exist in a read-write tensor (i.e.
|
|
// an input or output tensor). (e.g. `dims` contains [1, 1, 1, 3] and
|
|
// `dims_signature` contains [1, -1, -1, 3]).
|
|
const TfLiteIntArray* dims_signature;
|
|
} TfLiteTensor;
|
|
#else
|
|
// Specific reduced TfLiteTensor struct for TF Micro runtime. This struct
|
|
// contains only the minimum fields required to initialize and prepare a micro
|
|
// inference graph. The fields in this struct have been ordered from
|
|
// largest-to-smallest for optimal struct sizeof.
|
|
//
|
|
// NOTE: This flag is opt-in only at compile time.
|
|
typedef struct TfLiteTensor {
|
|
// TODO(b/155784997): Consider consolidating these quantization fields:
|
|
// Quantization information. Replaces params field above.
|
|
TfLiteQuantization quantization;
|
|
|
|
// Quantization information.
|
|
TfLiteQuantizationParams params;
|
|
|
|
// A union of data pointers. The appropriate type should be used for a typed
|
|
// tensor based on `type`.
|
|
TfLitePtrUnion data;
|
|
|
|
// A pointer to a structure representing the dimensionality interpretation
|
|
// that the buffer should have. NOTE: the product of elements of `dims`
|
|
// and the element datatype size should be equal to `bytes` below.
|
|
TfLiteIntArray* dims;
|
|
|
|
// The number of bytes required to store the data of this Tensor. I.e.
|
|
// (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if
|
|
// type is kTfLiteFloat32 and dims = {3, 2} then
|
|
// bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24.
|
|
size_t bytes;
|
|
|
|
// The data type specification for data stored in `data`. This affects
|
|
// what member of `data` union should be used.
|
|
TfLiteType type;
|
|
|
|
// How memory is mapped
|
|
// kTfLiteMmapRo: Memory mapped read only.
|
|
// i.e. weights
|
|
// kTfLiteArenaRw: Arena allocated read write memory
|
|
// (i.e. temporaries, outputs).
|
|
TfLiteAllocationType allocation_type;
|
|
|
|
// True if the tensor is a variable.
|
|
bool is_variable;
|
|
} TfLiteTensor;
|
|
#endif // TF_LITE_STATIC_MEMORY
|
|
|
|
#ifndef TF_LITE_STATIC_MEMORY
|
|
// Free data memory of tensor `t`.
|
|
void TfLiteTensorDataFree(TfLiteTensor* t);
|
|
|
|
// Free quantization data.
|
|
void TfLiteQuantizationFree(TfLiteQuantization* quantization);
|
|
|
|
// Free sparsity parameters.
|
|
void TfLiteSparsityFree(TfLiteSparsity* sparsity);
|
|
|
|
// Free memory of tensor `t`.
|
|
void TfLiteTensorFree(TfLiteTensor* t);
|
|
|
|
// Set all of a tensor's fields (and free any previously allocated data).
|
|
void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims,
|
|
TfLiteQuantizationParams quantization, char* buffer,
|
|
size_t size, TfLiteAllocationType allocation_type,
|
|
const void* allocation, bool is_variable,
|
|
TfLiteTensor* tensor);
|
|
|
|
// Resize the allocated data of a (dynamic) tensor. Tensors with allocation
|
|
// types other than kTfLiteDynamic will be ignored.
|
|
void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor);
|
|
#endif // TF_LITE_STATIC_MEMORY
|
|
|
|
// A structure representing an instance of a node.
|
|
// This structure only exhibits the inputs, outputs and user defined data, not
|
|
// other features like the type.
|
|
typedef struct TfLiteNode {
|
|
// Inputs to this node expressed as indices into the simulator's tensors.
|
|
TfLiteIntArray* inputs;
|
|
|
|
// Outputs to this node expressed as indices into the simulator's tensors.
|
|
TfLiteIntArray* outputs;
|
|
|
|
// intermediate tensors to this node expressed as indices into the simulator's
|
|
// tensors.
|
|
TfLiteIntArray* intermediates;
|
|
|
|
// Temporary tensors uses during the computations. This usually contains no
|
|
// tensors, but ops are allowed to change that if they need scratch space of
|
|
// any sort.
|
|
TfLiteIntArray* temporaries;
|
|
|
|
// Opaque data provided by the node implementer through `Registration.init`.
|
|
void* user_data;
|
|
|
|
// Opaque data provided to the node if the node is a builtin. This is usually
|
|
// a structure defined in builtin_op_data.h
|
|
void* builtin_data;
|
|
|
|
// Custom initial data. This is the opaque data provided in the flatbuffer.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
const void* custom_initial_data;
|
|
int custom_initial_data_size;
|
|
|
|
// The pointer to the delegate. This is non-null only when the node is
|
|
// created by calling `interpreter.ModifyGraphWithDelegate`.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
struct TfLiteDelegate* delegate;
|
|
} TfLiteNode;
|
|
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
//
|
|
// Currently, TfLiteDelegateParams has to be allocated in a way that it's
|
|
// trivially destructable. It will be stored as `builtin_data` field in
|
|
// `TfLiteNode` of the delegate node.
|
|
//
|
|
// See also the `CreateDelegateParams` function in `interpreter.cc` details.
|
|
typedef struct TfLiteDelegateParams {
|
|
struct TfLiteDelegate* delegate;
|
|
TfLiteIntArray* nodes_to_replace;
|
|
TfLiteIntArray* input_tensors;
|
|
TfLiteIntArray* output_tensors;
|
|
} TfLiteDelegateParams;
|
|
|
|
typedef struct TfLiteContext {
|
|
// Number of tensors in the context.
|
|
size_t tensors_size;
|
|
|
|
// The execution plan contains a list of the node indices in execution
|
|
// order. execution_plan->size is the current number of nodes. And,
|
|
// execution_plan->data[0] is the first node that needs to be run.
|
|
// TfLiteDelegates can traverse the current execution plan by iterating
|
|
// through each member of this array and using GetNodeAndRegistration() to
|
|
// access details about a node. i.e.
|
|
// TfLiteIntArray* execution_plan;
|
|
// TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan));
|
|
// for (int exec_index = 0; exec_index < execution_plan->size; exec_index++) {
|
|
// int node_index = execution_plan->data[exec_index];
|
|
// TfLiteNode* node;
|
|
// TfLiteRegistration* reg;
|
|
// context->GetNodeAndRegistration(context, node_index, &node, ®);
|
|
// }
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteStatus (*GetExecutionPlan)(struct TfLiteContext* context,
|
|
TfLiteIntArray** execution_plan);
|
|
|
|
// An array of tensors in the interpreter context (of length `tensors_size`)
|
|
TfLiteTensor* tensors;
|
|
|
|
// opaque full context ptr (an opaque c++ data structure)
|
|
void* impl_;
|
|
|
|
// Request memory pointer be resized. Updates dimensions on the tensor.
|
|
// NOTE: ResizeTensor takes ownership of newSize.
|
|
TfLiteStatus (*ResizeTensor)(struct TfLiteContext*, TfLiteTensor* tensor,
|
|
TfLiteIntArray* new_size);
|
|
// Request that an error be reported with format string msg.
|
|
void (*ReportError)(struct TfLiteContext*, const char* msg, ...);
|
|
|
|
// Add `tensors_to_add` tensors, preserving pre-existing Tensor entries. If
|
|
// non-null, the value pointed to by `first_new_tensor_index` will be set to
|
|
// the index of the first new tensor.
|
|
TfLiteStatus (*AddTensors)(struct TfLiteContext*, int tensors_to_add,
|
|
int* first_new_tensor_index);
|
|
|
|
// Get a Tensor node by node_index.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteStatus (*GetNodeAndRegistration)(
|
|
struct TfLiteContext*, int node_index, TfLiteNode** node,
|
|
struct TfLiteRegistration** registration);
|
|
|
|
// Replace ops with one or more stub delegate operations. This function
|
|
// does not take ownership of `nodes_to_replace`.
|
|
TfLiteStatus (*ReplaceNodeSubsetsWithDelegateKernels)(
|
|
struct TfLiteContext*, struct TfLiteRegistration registration,
|
|
const TfLiteIntArray* nodes_to_replace, struct TfLiteDelegate* delegate);
|
|
|
|
// Number of threads that are recommended to subsystems like gemmlowp and
|
|
// eigen.
|
|
int recommended_num_threads;
|
|
|
|
// Access external contexts by type.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteExternalContext* (*GetExternalContext)(struct TfLiteContext*,
|
|
TfLiteExternalContextType);
|
|
// Set the value of a external context. Does not take ownership of the
|
|
// pointer.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
void (*SetExternalContext)(struct TfLiteContext*, TfLiteExternalContextType,
|
|
TfLiteExternalContext*);
|
|
|
|
// Flag for allowing float16 precision for FP32 calculation.
|
|
// default: false.
|
|
// WARNING: This is an experimental API and subject to change.
|
|
bool allow_fp32_relax_to_fp16;
|
|
|
|
// Pointer to the op-level profiler, if set; nullptr otherwise.
|
|
void* profiler;
|
|
|
|
// Allocate persistent buffer which has the same life time as the interpreter.
|
|
// The memory is allocated from heap for TFL, and from tail in TFLM.
|
|
// If *ptr is not nullptr, the pointer will be reallocated.
|
|
// This method is only available in Prepare stage.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteStatus (*AllocatePersistentBuffer)(struct TfLiteContext* ctx,
|
|
size_t bytes, void** ptr);
|
|
|
|
// Allocate a buffer which will be deallocated right after invoke phase.
|
|
// The memory is allocated from heap in TFL, and from volatile arena in TFLM.
|
|
// This method is only available in invoke stage.
|
|
// NOTE: If possible use RequestScratchBufferInArena method to avoid memory
|
|
// allocation during inference time.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteStatus (*AllocateBufferForEval)(struct TfLiteContext* ctx, size_t bytes,
|
|
void** ptr);
|
|
|
|
// Request a scratch buffer in the arena through static memory planning.
|
|
// This method is only available in Prepare stage and the buffer is allocated
|
|
// by the interpreter between Prepare and Eval stage. In Eval stage,
|
|
// GetScratchBuffer API can be used to fetch the address.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteStatus (*RequestScratchBufferInArena)(struct TfLiteContext* ctx,
|
|
size_t bytes, int* buffer_idx);
|
|
|
|
// Get the scratch buffer pointer.
|
|
// This method is only available in Eval stage.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
void* (*GetScratchBuffer)(struct TfLiteContext* ctx, int buffer_idx);
|
|
|
|
// Resize the memory pointer of the `tensor`. This method behaves the same as
|
|
// `ResizeTensor`, except that it makes a copy of the shape array internally
|
|
// so the shape array could be deallocated right afterwards.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteStatus (*ResizeTensorExplicit)(struct TfLiteContext* ctx,
|
|
TfLiteTensor* tensor, int dims,
|
|
const int* shape);
|
|
|
|
// This method provides a preview of post-delegation partitioning. Each
|
|
// TfLiteDelegateParams in the referenced array corresponds to one instance of
|
|
// the delegate kernel.
|
|
// Example usage:
|
|
//
|
|
// TfLiteIntArray* nodes_to_replace = ...;
|
|
// TfLiteDelegateParams* params_array;
|
|
// int num_partitions = 0;
|
|
// TF_LITE_ENSURE_STATUS(context->PreviewDelegatePartitioning(
|
|
// context, delegate, nodes_to_replace, ¶ms_array, &num_partitions));
|
|
// for (int idx = 0; idx < num_partitions; idx++) {
|
|
// const auto& partition_params = params_array[idx];
|
|
// ...
|
|
// }
|
|
//
|
|
// NOTE: The context owns the memory referenced by partition_params_array. It
|
|
// will be cleared with another call to PreviewDelegateParitioning, or after
|
|
// TfLiteDelegateParams::Prepare returns.
|
|
//
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
TfLiteStatus (*PreviewDelegatePartitioning)(
|
|
struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace,
|
|
TfLiteDelegateParams** partition_params_array, int* num_partitions);
|
|
} TfLiteContext;
|
|
|
|
typedef struct TfLiteRegistration {
|
|
// Initializes the op from serialized data.
|
|
// If a built-in op:
|
|
// `buffer` is the op's params data (TfLiteLSTMParams*).
|
|
// `length` is zero.
|
|
// If custom op:
|
|
// `buffer` is the op's `custom_options`.
|
|
// `length` is the size of the buffer.
|
|
//
|
|
// Returns a type-punned (i.e. void*) opaque data (e.g. a primitive pointer
|
|
// or an instance of a struct).
|
|
//
|
|
// The returned pointer will be stored with the node in the `user_data` field,
|
|
// accessible within prepare and invoke functions below.
|
|
// NOTE: if the data is already in the desired format, simply implement this
|
|
// function to return `nullptr` and implement the free function to be a no-op.
|
|
void* (*init)(TfLiteContext* context, const char* buffer, size_t length);
|
|
|
|
// The pointer `buffer` is the data previously returned by an init invocation.
|
|
void (*free)(TfLiteContext* context, void* buffer);
|
|
|
|
// prepare is called when the inputs this node depends on have been resized.
|
|
// context->ResizeTensor() can be called to request output tensors to be
|
|
// resized.
|
|
//
|
|
// Returns kTfLiteOk on success.
|
|
TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node);
|
|
|
|
// Execute the node (should read node->inputs and output to node->outputs).
|
|
// Returns kTfLiteOk on success.
|
|
TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node);
|
|
|
|
// profiling_string is called during summarization of profiling information
|
|
// in order to group executions together. Providing a value here will cause a
|
|
// given op to appear multiple times is the profiling report. This is
|
|
// particularly useful for custom ops that can perform significantly
|
|
// different calculations depending on their `user-data`.
|
|
const char* (*profiling_string)(const TfLiteContext* context,
|
|
const TfLiteNode* node);
|
|
|
|
// Builtin codes. If this kernel refers to a builtin this is the code
|
|
// of the builtin. This is so we can do marshaling to other frameworks like
|
|
// NN API.
|
|
// Note: It is the responsibility of the registration binder to set this
|
|
// properly.
|
|
int32_t builtin_code;
|
|
|
|
// Custom op name. If the op is a builtin, this will be null.
|
|
// Note: It is the responsibility of the registration binder to set this
|
|
// properly.
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
const char* custom_name;
|
|
|
|
// The version of the op.
|
|
// Note: It is the responsibility of the registration binder to set this
|
|
// properly.
|
|
int version;
|
|
} TfLiteRegistration;
|
|
|
|
// The flags used in `TfLiteDelegate`. Note that this is a bitmask, so the
|
|
// values should be 1, 2, 4, 8, ...etc.
|
|
typedef enum TfLiteDelegateFlags {
|
|
kTfLiteDelegateFlagsNone = 0,
|
|
// The flag is set if the delegate can handle dynamic sized tensors.
|
|
// For example, the output shape of a `Resize` op with non-constant shape
|
|
// can only be inferred when the op is invoked.
|
|
// In this case, the Delegate is responsible for calling
|
|
// `SetTensorToDynamic` to mark the tensor as a dynamic tensor, and calling
|
|
// `ResizeTensor` when invoking the op.
|
|
//
|
|
// If the delegate isn't capable to handle dynamic tensors, this flag need
|
|
// to be set to false.
|
|
kTfLiteDelegateFlagsAllowDynamicTensors = 1
|
|
} TfLiteDelegateFlags;
|
|
|
|
// WARNING: This is an experimental interface that is subject to change.
|
|
typedef struct TfLiteDelegate {
|
|
// Data that delegate needs to identify itself. This data is owned by the
|
|
// delegate. The delegate is owned in the user code, so the delegate is
|
|
// responsible for doing this when it is destroyed.
|
|
void* data_;
|
|
|
|
// Invoked by ModifyGraphWithDelegate. This prepare is called, giving the
|
|
// delegate a view of the current graph through TfLiteContext*. It typically
|
|
// will look at the nodes and call ReplaceNodeSubsetsWithDelegateKernels()
|
|
// to ask the TensorFlow lite runtime to create macro-nodes to represent
|
|
// delegated subgraphs of the original graph.
|
|
TfLiteStatus (*Prepare)(TfLiteContext* context,
|
|
struct TfLiteDelegate* delegate);
|
|
|
|
// Copy the data from delegate buffer handle into raw memory of the given
|
|
// 'tensor'. Note that the delegate is allowed to allocate the raw bytes as
|
|
// long as it follows the rules for kTfLiteDynamic tensors, in which case this
|
|
// cannot be null.
|
|
TfLiteStatus (*CopyFromBufferHandle)(TfLiteContext* context,
|
|
struct TfLiteDelegate* delegate,
|
|
TfLiteBufferHandle buffer_handle,
|
|
TfLiteTensor* tensor);
|
|
|
|
// Copy the data from raw memory of the given 'tensor' to delegate buffer
|
|
// handle. This can be null if the delegate doesn't use its own buffer.
|
|
TfLiteStatus (*CopyToBufferHandle)(TfLiteContext* context,
|
|
struct TfLiteDelegate* delegate,
|
|
TfLiteBufferHandle buffer_handle,
|
|
TfLiteTensor* tensor);
|
|
|
|
// Free the Delegate Buffer Handle. Note: This only frees the handle, but
|
|
// this doesn't release the underlying resource (e.g. textures). The
|
|
// resources are either owned by application layer or the delegate.
|
|
// This can be null if the delegate doesn't use its own buffer.
|
|
void (*FreeBufferHandle)(TfLiteContext* context,
|
|
struct TfLiteDelegate* delegate,
|
|
TfLiteBufferHandle* handle);
|
|
|
|
// Bitmask flags. See the comments in `TfLiteDelegateFlags`.
|
|
int64_t flags;
|
|
} TfLiteDelegate;
|
|
|
|
// Build a 'null' delegate, with all the fields properly set to their default
|
|
// values.
|
|
TfLiteDelegate TfLiteDelegateCreate();
|
|
|
|
#ifdef __cplusplus
|
|
} // extern "C"
|
|
#endif // __cplusplus
|
|
#endif // TENSORFLOW_LITE_C_COMMON_H_
|