STT-tensorflow/tensorflow/lite/allocation.h
Terry Heo 1c4d426919 Implement "Greedy by size planner" for more optimal memory allocation
http://arxiv.org/abs/2001.03288
Observed improvements:
- Mobilenet V1 has 35% has memory reduction
- Mobilenet V2 has 2% reduction
- Majority of all other tested models demonstrated ~10-15% improvement

PiperOrigin-RevId: 293250794
Change-Id: I41b1f927dfbafb1b3db360522a1417c6d993a789
2020-02-04 16:08:39 -08:00

113 lines
3.2 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Main abstraction controlling the tflite interpreter.
// See context.h for the API for defining operations (TfLiteRegistration).
#ifndef TENSORFLOW_LITE_ALLOCATION_H_
#define TENSORFLOW_LITE_ALLOCATION_H_
#include <cstdio>
#include <cstdlib>
#include <memory>
#include <vector>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/core/api/error_reporter.h"
#include "tensorflow/lite/string_type.h"
namespace tflite {
// A memory allocation handle. This could be a mmap or shared memory.
class Allocation {
public:
virtual ~Allocation() {}
enum class Type {
kMMap,
kFileCopy,
kMemory,
};
// Base pointer of this allocation
virtual const void* base() const = 0;
// Size in bytes of the allocation
virtual size_t bytes() const = 0;
// Whether the allocation is valid
virtual bool valid() const = 0;
// Return the type of the Allocation.
Type type() const { return type_; }
protected:
Allocation(ErrorReporter* error_reporter, Type type)
: error_reporter_(error_reporter), type_(type) {}
ErrorReporter* error_reporter_;
private:
const Type type_;
};
class MMAPAllocation : public Allocation {
public:
MMAPAllocation(const char* filename, ErrorReporter* error_reporter);
virtual ~MMAPAllocation();
const void* base() const override;
size_t bytes() const override;
bool valid() const override;
int fd() const { return mmap_fd_; }
static bool IsSupported();
protected:
// Data required for mmap.
int mmap_fd_ = -1; // mmap file descriptor
const void* mmapped_buffer_;
size_t buffer_size_bytes_ = 0;
};
class FileCopyAllocation : public Allocation {
public:
FileCopyAllocation(const char* filename, ErrorReporter* error_reporter);
virtual ~FileCopyAllocation();
const void* base() const override;
size_t bytes() const override;
bool valid() const override;
private:
// Data required for mmap.
std::unique_ptr<const char[]> copied_buffer_;
size_t buffer_size_bytes_ = 0;
};
class MemoryAllocation : public Allocation {
public:
// Allocates memory with the pointer and the number of bytes of the memory.
// The pointer has to remain alive and unchanged until the destructor is
// called.
MemoryAllocation(const void* ptr, size_t num_bytes,
ErrorReporter* error_reporter);
virtual ~MemoryAllocation();
const void* base() const override;
size_t bytes() const override;
bool valid() const override;
private:
const void* buffer_;
size_t buffer_size_bytes_ = 0;
};
} // namespace tflite
#endif // TENSORFLOW_LITE_ALLOCATION_H_