STT-tensorflow/tensorflow/python/tools/freeze_graph_test.py
A. Unique TensorFlower 3d602790f8 Make freeze_graph work with empty tag-set i.e. --saved_model_tags=""
PiperOrigin-RevId: 304346115
Change-Id: I3adff9b5da8e6c56f6c7032a5f2f380886847456
2020-04-02 00:57:31 -07:00

344 lines
14 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests the graph freezing tool."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
from absl.testing import parameterized
from tensorflow.core.example import example_pb2
from tensorflow.core.framework import graph_pb2
from tensorflow.core.protobuf import saver_pb2
from tensorflow.python.client import session
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import graph_io
from tensorflow.python.framework import importer
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import parsing_ops
from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import signature_def_utils
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.tools import freeze_graph
from tensorflow.python.training import saver as saver_lib
class FreezeGraphTest(test_util.TensorFlowTestCase, parameterized.TestCase):
def _testFreezeGraph(self, saver_write_version):
checkpoint_prefix = os.path.join(self.get_temp_dir(), "saved_checkpoint")
checkpoint_state_name = "checkpoint_state"
input_graph_name = "input_graph.pb"
output_graph_name = "output_graph.pb"
# We'll create an input graph that has a single variable containing 1.0,
# and that then multiplies it by 2.
with ops.Graph().as_default():
variable_node = variables.VariableV1(1.0, name="variable_node")
output_node = math_ops.multiply(variable_node, 2.0, name="output_node")
sess = session.Session()
init = variables.global_variables_initializer()
sess.run(init)
output = sess.run(output_node)
self.assertNear(2.0, output, 0.00001)
saver = saver_lib.Saver(write_version=saver_write_version)
checkpoint_path = saver.save(
sess,
checkpoint_prefix,
global_step=0,
latest_filename=checkpoint_state_name)
graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)
# We save out the graph to disk, and then call the const conversion
# routine.
input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
input_saver_def_path = ""
input_binary = False
output_node_names = "output_node"
restore_op_name = "save/restore_all"
filename_tensor_name = "save/Const:0"
output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)
clear_devices = False
freeze_graph.freeze_graph(
input_graph_path,
input_saver_def_path,
input_binary,
checkpoint_path,
output_node_names,
restore_op_name,
filename_tensor_name,
output_graph_path,
clear_devices,
"",
"",
"",
checkpoint_version=saver_write_version)
# Now we make sure the variable is now a constant, and that the graph still
# produces the expected result.
with ops.Graph().as_default():
output_graph_def = graph_pb2.GraphDef()
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = importer.import_graph_def(output_graph_def, name="")
self.assertEqual(4, len(output_graph_def.node))
for node in output_graph_def.node:
self.assertNotEqual("VariableV2", node.op)
self.assertNotEqual("Variable", node.op)
with session.Session() as sess:
output_node = sess.graph.get_tensor_by_name("output_node:0")
output = sess.run(output_node)
self.assertNear(2.0, output, 0.00001)
def _createTFExampleString(self, feature_name, feature_value):
"""Create a serialized tensorflow example."""
example = example_pb2.Example()
example.features.feature[feature_name].float_list.value.extend([
feature_value])
return example.SerializeToString()
def _writeDummySavedModel(self, path, feature_name, tags):
"""Writes a classifier with two input features to the given path."""
with ops.Graph().as_default():
examples = array_ops.placeholder(dtypes.string, name="input_node")
feature_configs = {
feature_name: parsing_ops.FixedLenFeature(shape=[],
dtype=dtypes.float32),
}
features = parsing_ops.parse_example(examples, feature_configs)
feature = features[feature_name]
variable_node = variables.VariableV1(1.0, name="variable_node")
scores = math_ops.multiply(variable_node, feature, name="output_node")
class_feature = array_ops.fill(array_ops.shape(feature),
"class_%s" % feature_name)
classes = array_ops.transpose(class_feature)
with session.Session() as sess:
sess.run(variables.global_variables_initializer())
signature = (
signature_def_utils.classification_signature_def(
examples=examples,
classes=classes,
scores=scores,))
builder = saved_model_builder.SavedModelBuilder(path)
builder.add_meta_graph_and_variables(
sess,
tags,
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature,
},
)
builder.save(as_text=True)
@test_util.run_v1_only("b/120545219")
def testFreezeGraphV1(self):
self._testFreezeGraph(saver_pb2.SaverDef.V1)
@test_util.run_v1_only("b/120545219")
def testFreezeGraphV2(self):
self._testFreezeGraph(saver_pb2.SaverDef.V2)
def testFreezeMetaGraph(self):
tmp_dir = self.get_temp_dir()
checkpoint_prefix = os.path.join(tmp_dir, "meta_graph_checkpoint")
checkpoint_state_name = "checkpoint_state"
output_graph_filename = os.path.join(tmp_dir, "output_graph.pb")
with ops.Graph().as_default():
variable_node = variables.VariableV1(1.0, name="variable_node")
output_node = math_ops.multiply(variable_node, 2.0, name="output_node")
sess = session.Session()
init = variables.global_variables_initializer()
sess.run(init)
output = sess.run(output_node)
self.assertNear(2.0, output, 0.00001)
saver = saver_lib.Saver()
checkpoint_path = saver.save(
sess,
checkpoint_prefix,
global_step=0,
latest_filename=checkpoint_state_name)
input_saver_def_path = ""
input_binary = True
output_node_names = "output_node"
restore_op_name = "save/restore_all"
filename_tensor_name = "save/Const:0"
clear_devices = False
input_meta_graph = checkpoint_path + ".meta"
freeze_graph.freeze_graph(
"", input_saver_def_path, input_binary, checkpoint_path,
output_node_names, restore_op_name, filename_tensor_name,
output_graph_filename, clear_devices, "", "", "", input_meta_graph)
# Now we make sure the variable is now a constant, and that the graph still
# produces the expected result.
with ops.Graph().as_default():
output_graph_def = graph_pb2.GraphDef()
with open(output_graph_filename, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = importer.import_graph_def(output_graph_def, name="")
self.assertEqual(4, len(output_graph_def.node))
for node in output_graph_def.node:
self.assertNotEqual("VariableV2", node.op)
self.assertNotEqual("Variable", node.op)
with session.Session() as sess:
output_node = sess.graph.get_tensor_by_name("output_node:0")
output = sess.run(output_node)
self.assertNear(2.0, output, 0.00001)
@parameterized.named_parameters(
("empty_tags_set", "", []),
("default_tags_set", tag_constants.SERVING, [tag_constants.SERVING]))
def testFreezeSavedModel(self, tags_string, tags_list):
tmp_dir = self.get_temp_dir()
saved_model_dir = os.path.join(tmp_dir, "saved_model_dir")
feature_name = "feature"
self._writeDummySavedModel(saved_model_dir, feature_name, tags_list)
output_graph_filename = os.path.join(tmp_dir, "output_graph.pb")
input_saved_model_dir = saved_model_dir
output_node_names = "output_node"
input_binary = False
input_saver_def_path = False
restore_op_name = None
filename_tensor_name = None
clear_devices = False
input_meta_graph = False
checkpoint_path = None
input_graph_filename = None
saved_model_tags = tags_string
freeze_graph.freeze_graph(input_graph_filename, input_saver_def_path,
input_binary, checkpoint_path, output_node_names,
restore_op_name, filename_tensor_name,
output_graph_filename, clear_devices, "", "", "",
input_meta_graph, input_saved_model_dir,
saved_model_tags)
# Now we make sure the variable is now a constant, and that the graph still
# produces the expected result.
with ops.Graph().as_default():
output_graph_def = graph_pb2.GraphDef()
with open(output_graph_filename, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = importer.import_graph_def(output_graph_def, name="")
if any(u"ParseExampleV2" in node.name for node in output_graph_def.node):
expected_node_count = 10
else:
expected_node_count = 8
self.assertEqual(expected_node_count, len(output_graph_def.node))
for node in output_graph_def.node:
self.assertNotEqual("VariableV2", node.op)
self.assertNotEqual("Variable", node.op)
feature_value = 2.0
example = self._createTFExampleString(feature_name, feature_value)
with session.Session() as sess:
input_node = sess.graph.get_tensor_by_name("input_node:0")
output_node = sess.graph.get_tensor_by_name("output_node:0")
output = sess.run(output_node, feed_dict={input_node: [example]})
self.assertNear(feature_value, output, 0.00001)
def testSinglePartitionedVariable(self):
"""Ensures partitioned variables fail cleanly with freeze graph."""
checkpoint_prefix = os.path.join(self.get_temp_dir(), "saved_checkpoint")
checkpoint_state_name = "checkpoint_state"
input_graph_name = "input_graph.pb"
output_graph_name = "output_graph.pb"
# Create a graph with partition variables. When weights are partitioned into
# a single partition, the weights variable is followed by a identity ->
# identity (an additional identity node).
partitioner = partitioned_variables.fixed_size_partitioner(1)
with ops.Graph().as_default():
with variable_scope.variable_scope("part", partitioner=partitioner):
batch_size, height, width, depth = 5, 128, 128, 3
input1 = array_ops.zeros(
(batch_size, height, width, depth), name="input1")
input2 = array_ops.zeros(
(batch_size, height, width, depth), name="input2")
num_nodes = depth
filter1 = variable_scope.get_variable("filter", [num_nodes, num_nodes])
filter2 = array_ops.reshape(filter1, [1, 1, num_nodes, num_nodes])
conv = nn.conv2d(
input=input1, filter=filter2, strides=[1, 1, 1, 1], padding="SAME")
node = math_ops.add(conv, input2, name="test/add")
node = nn.relu6(node, name="test/relu6")
# Save graph and checkpoints.
sess = session.Session()
sess.run(variables.global_variables_initializer())
saver = saver_lib.Saver()
checkpoint_path = saver.save(
sess,
checkpoint_prefix,
global_step=0,
latest_filename=checkpoint_state_name)
graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)
# Ensure this graph has partition variables.
self.assertTrue([
tensor.name.split(":")[0]
for op in sess.graph.get_operations()
for tensor in op.values()
if re.search(r"/part_\d+/", tensor.name)
])
# Test freezing graph doesn't make it crash.
output_node_names = "save/restore_all"
output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)
with self.assertRaises(ValueError):
freeze_graph.freeze_graph_with_def_protos(
input_graph_def=sess.graph_def,
input_saver_def=None,
input_checkpoint=checkpoint_path,
output_node_names=output_node_names,
restore_op_name="save/restore_all", # default value
filename_tensor_name="save/Const:0", # default value
output_graph=output_graph_path,
clear_devices=False,
initializer_nodes="")
if __name__ == "__main__":
test.main()