STT-tensorflow/tensorflow/python/profiler/profiler_test.py
2020-01-16 14:36:52 +09:00

225 lines
8.4 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.client import session
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import variables
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
from tensorflow.python.profiler import option_builder
# pylint: disable=g-bad-import-order
from tensorflow.python.profiler import model_analyzer
from tensorflow.python.profiler.internal import model_analyzer_testlib as lib
builder = option_builder.ProfileOptionBuilder
class ProfilerTest(test.TestCase):
@test_util.run_deprecated_v1
def testProfileBasic(self):
ops.reset_default_graph()
outfile = os.path.join(test.get_temp_dir(), 'dump')
opts = (builder(builder.trainable_variables_parameter())
.with_file_output(outfile)
.with_accounted_types(['.*'])
.select(['params', 'float_ops', 'micros', 'bytes',
'device', 'op_types', 'occurrence']).build())
# Test the output without run_meta.
sess = session.Session()
r = lib.BuildFullModel()
sess.run(variables.global_variables_initializer())
# Test the output with run_meta.
run_meta = config_pb2.RunMetadata()
_ = sess.run(r,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
profiler = model_analyzer.Profiler(sess.graph)
profiler.add_step(1, run_meta)
profiler.profile_graph(opts)
with gfile.Open(outfile, 'r') as f:
profiler_str = f.read()
model_analyzer.profile(
sess.graph, cmd='graph', run_meta=run_meta, options=opts)
with gfile.Open(outfile, 'r') as f:
pma_str = f.read()
self.assertEqual(pma_str, profiler_str)
profiler.profile_name_scope(opts)
with gfile.Open(outfile, 'r') as f:
profiler_str = f.read()
model_analyzer.profile(
sess.graph, cmd='scope', run_meta=run_meta, options=opts)
with gfile.Open(outfile, 'r') as f:
pma_str = f.read()
self.assertEqual(pma_str, profiler_str)
profiler.profile_python(opts)
with gfile.Open(outfile, 'r') as f:
profiler_str = f.read()
model_analyzer.profile(
sess.graph, cmd='code', run_meta=run_meta, options=opts)
with gfile.Open(outfile, 'r') as f:
pma_str = f.read()
self.assertEqual(pma_str, profiler_str)
profiler.profile_operations(opts)
with gfile.Open(outfile, 'r') as f:
profiler_str = f.read()
model_analyzer.profile(
sess.graph, cmd='op', run_meta=run_meta, options=opts)
with gfile.Open(outfile, 'r') as f:
pma_str = f.read()
self.assertEqual(pma_str, profiler_str)
model_analyzer.profile(
sess.graph, cmd='scope', run_meta=run_meta, options=opts)
with gfile.Open(outfile, 'r') as f:
pma_str = f.read()
self.assertNotEqual(pma_str, profiler_str)
def testMultiStepProfile(self):
ops.reset_default_graph()
opts = builder.time_and_memory(min_bytes=0)
with session.Session() as sess:
r1, r2, r3 = lib.BuildSplittableModel()
sess.run(variables.global_variables_initializer())
profiler = model_analyzer.Profiler(sess.graph)
pb0 = profiler.profile_name_scope(opts)
run_meta = config_pb2.RunMetadata()
_ = sess.run(r1,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta)
profiler.add_step(1, run_meta)
pb1 = profiler.profile_name_scope(opts)
self.assertNotEqual(lib.SearchTFProfNode(pb1, 'DW'), None)
self.assertEqual(lib.SearchTFProfNode(pb1, 'DW2'), None)
self.assertEqual(lib.SearchTFProfNode(pb1, 'add'), None)
run_meta2 = config_pb2.RunMetadata()
_ = sess.run(r2,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta2)
profiler.add_step(2, run_meta2)
pb2 = profiler.profile_name_scope(opts)
self.assertNotEqual(lib.SearchTFProfNode(pb2, 'DW'), None)
self.assertNotEqual(lib.SearchTFProfNode(pb2, 'DW2'), None)
self.assertEqual(lib.SearchTFProfNode(pb2, 'add'), None)
run_meta3 = config_pb2.RunMetadata()
_ = sess.run(r3,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=run_meta3)
profiler.add_step(3, run_meta3)
pb3 = profiler.profile_name_scope(opts)
self.assertNotEqual(lib.SearchTFProfNode(pb3, 'DW'), None)
self.assertNotEqual(lib.SearchTFProfNode(pb3, 'DW2'), None)
self.assertNotEqual(lib.SearchTFProfNode(pb3, 'add'), None)
self.assertEqual(lib.SearchTFProfNode(pb0, 'Conv2D'), None)
self.assertGreater(lib.SearchTFProfNode(pb1, 'Conv2D').exec_micros, 0)
self.assertEqual(lib.SearchTFProfNode(pb1, 'Conv2D_1'), None)
self.assertGreater(lib.SearchTFProfNode(pb2, 'Conv2D_1').exec_micros, 0)
self.assertEqual(lib.SearchTFProfNode(pb2, 'add'), None)
self.assertGreater(lib.SearchTFProfNode(pb3, 'add').exec_micros, 0)
advice_pb = profiler.advise(model_analyzer.ALL_ADVICE)
self.assertTrue('AcceleratorUtilizationChecker' in advice_pb.checkers)
self.assertTrue('ExpensiveOperationChecker' in advice_pb.checkers)
self.assertTrue('OperationChecker' in advice_pb.checkers)
checker = advice_pb.checkers['AcceleratorUtilizationChecker']
if test.is_gpu_available():
self.assertGreater(len(checker.reports), 0)
else:
self.assertEqual(len(checker.reports), 0)
checker = advice_pb.checkers['ExpensiveOperationChecker']
self.assertGreater(len(checker.reports), 0)
@test_util.run_deprecated_v1
def testMultipleProfilePerStep(self):
ops.reset_default_graph()
opts = (builder(builder.trainable_variables_parameter())
.with_empty_output()
.with_accounted_types(['.*'])
.select(['micros', 'bytes', 'peak_bytes',
'residual_bytes', 'output_bytes']).build())
r = lib.BuildSmallModel()
sess = session.Session()
profiler = model_analyzer.Profiler(sess.graph)
init_var_run_meta = config_pb2.RunMetadata()
sess.run(variables.global_variables_initializer(),
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=init_var_run_meta)
train_run_meta = config_pb2.RunMetadata()
sess.run(r,
options=config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE),
run_metadata=train_run_meta)
profiler.add_step(0, train_run_meta)
ret1 = profiler.profile_name_scope(opts)
n1 = lib.SearchTFProfNode(
ret1, 'DW/Initializer/random_normal/RandomStandardNormal')
# Without the var initialization run_meta, it doesn't have the
# information of var_initialization.
self.assertEqual(n1.exec_micros, 0)
self.assertEqual(n1.requested_bytes, 0)
self.assertEqual(n1.peak_bytes, 0)
self.assertEqual(n1.residual_bytes, 0)
profiler.add_step(0, init_var_run_meta)
ret2 = profiler.profile_name_scope(opts)
n2 = lib.SearchTFProfNode(
ret2, 'DW/Initializer/random_normal/RandomStandardNormal')
# After adding the var initialization run_meta.
self.assertGreater(n2.exec_micros, 0)
self.assertGreater(n2.requested_bytes, 0)
self.assertGreater(n2.peak_bytes, 0)
self.assertGreater(n2.residual_bytes, 0)
if __name__ == '__main__':
test.main()