STT-tensorflow/tensorflow/python/ops/handle_data_util.py
Katherine Wu 8318ab26da Set handle data of function inputs and outputs.
Fixes bug when taking gradients of nested functions.

PiperOrigin-RevId: 346241008
Change-Id: I50fc01bd5d971d272058b13b5964f8cdc28b00d0
2020-12-07 20:55:03 -08:00

65 lines
2.6 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Decorator to overrides the gradient for a function."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.client import pywrap_tf_session
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
get_resource_handle_data = ops.get_resource_handle_data
def copy_handle_data(source_t, target_t):
"""Copies HandleData for variant and resource type tensors if available.
The CppShapeInferenceResult::HandleData proto contains information about the
shapes and types of the element tensors of resource/variant type tensors.
We need to copy this across function boundaries, i.e., when capturing a
placeholder or when returning a function tensor as output. If we don't do this
the element tensors will have unknown shapes, e.g., if a TensorList variant
tensor is captured as a placeholder, elements popped from that list would have
unknown shape.
Args:
source_t: The tensor to copy HandleData from.
target_t: The tensor to copy HandleData to.
"""
if (target_t.dtype == dtypes.resource or
target_t.dtype == dtypes.variant):
if isinstance(source_t, ops.EagerTensor):
handle_data = source_t._handle_data # pylint: disable=protected-access
else:
handle_data = get_resource_handle_data(source_t)
if (handle_data is not None
and handle_data.is_set
and handle_data.shape_and_type):
set_handle_data(target_t, handle_data)
def set_handle_data(target_t, handle_data):
# pylint: disable=protected-access
if isinstance(target_t, ops.EagerTensor):
target_t._handle_data = handle_data
return
pywrap_tf_session.SetHandleShapeAndType(target_t.graph._c_graph,
target_t._as_tf_output(),
handle_data.SerializeToString())
# pylint: enable=protected-access