STT-tensorflow/tensorflow/python/kernel_tests/weights_broadcast_test.py
Gaurav Jain f618ab4955 Move away from deprecated asserts
- assertEquals -> assertEqual
- assertRaisesRegexp -> assertRegexpMatches
- assertRegexpMatches -> assertRegex

PiperOrigin-RevId: 319118081
Change-Id: Ieb457128522920ab55d6b69a7f244ab798a7d689
2020-06-30 16:10:22 -07:00

308 lines
10 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for broadcast rules."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import dtypes as dtypes_lib
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import weights_broadcast_ops
from tensorflow.python.platform import test
def _test_values(shape):
return np.reshape(np.cumsum(np.ones(shape), dtype=np.int32), newshape=shape)
class AssertBroadcastableTest(test.TestCase):
def setUp(self):
ops.reset_default_graph()
def _test_valid(self, weights, values):
static_op = weights_broadcast_ops.assert_broadcastable(
weights=weights, values=values)
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
dynamic_op = weights_broadcast_ops.assert_broadcastable(
weights=weights_placeholder, values=values_placeholder)
with self.cached_session():
static_op.run()
dynamic_op.run(feed_dict={
weights_placeholder: weights,
values_placeholder: values,
})
@test_util.run_deprecated_v1
def testScalar(self):
self._test_valid(weights=5, values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def test1x1x1(self):
self._test_valid(
weights=np.asarray((5,)).reshape((1, 1, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def test1x1xN(self):
self._test_valid(
weights=np.asarray((5, 7, 11, 3)).reshape((1, 1, 4)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def test1xNx1(self):
self._test_valid(
weights=np.asarray((5, 11)).reshape((1, 2, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def test1xNxN(self):
self._test_valid(
weights=np.asarray((5, 7, 11, 3, 2, 13, 7, 5)).reshape((1, 2, 4)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testNx1x1(self):
self._test_valid(
weights=np.asarray((5, 7, 11)).reshape((3, 1, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testNx1xN(self):
self._test_valid(
weights=np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3)).reshape((3, 1, 4)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testNxNxN(self):
self._test_valid(
weights=np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4)),
values=_test_values((3, 2, 4)))
def _test_invalid(self, weights, values):
error_msg = 'weights can not be broadcast to values'
with self.assertRaisesRegex(ValueError, error_msg):
weights_broadcast_ops.assert_broadcastable(weights=weights, values=values)
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
dynamic_op = weights_broadcast_ops.assert_broadcastable(
weights=weights_placeholder, values=values_placeholder)
with self.cached_session():
with self.assertRaisesRegex(errors_impl.OpError, error_msg):
dynamic_op.run(feed_dict={
weights_placeholder: weights,
values_placeholder: values,
})
@test_util.run_deprecated_v1
def testInvalid1(self):
self._test_invalid(weights=np.asarray((5,)), values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalid1x1(self):
self._test_invalid(
weights=np.asarray((5,)).reshape((1, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidPrefixMatch(self):
self._test_invalid(
weights=np.asarray((5, 7, 11, 3, 2, 12)).reshape((3, 2)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidSuffixMatch(self):
self._test_invalid(
weights=np.asarray((5, 7, 11, 3, 2, 12, 7, 5)).reshape((2, 4)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidOnesExtraDim(self):
self._test_invalid(
weights=np.asarray((5,)).reshape((1, 1, 1, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidPrefixMatchExtraDim(self):
self._test_invalid(
weights=np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidSuffixMatchExtraDim(self):
self._test_invalid(
weights=np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((1, 3, 2, 4)),
values=_test_values((3, 2, 4)))
class BroadcastWeightsTest(test.TestCase):
def setUp(self):
ops.reset_default_graph()
def _test_valid(self, weights, values, expected):
static_op = weights_broadcast_ops.broadcast_weights(
weights=weights, values=values)
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
dynamic_op = weights_broadcast_ops.broadcast_weights(
weights=weights_placeholder, values=values_placeholder)
with self.cached_session():
self.assertAllEqual(expected, self.evaluate(static_op))
self.assertAllEqual(expected, dynamic_op.eval(feed_dict={
weights_placeholder: weights,
values_placeholder: values,
}))
@test_util.run_deprecated_v1
def testScalar(self):
self._test_valid(
weights=5,
values=_test_values((3, 2, 4)),
expected=5 * np.ones((3, 2, 4)))
@test_util.run_deprecated_v1
def test1x1x1(self):
self._test_valid(
weights=np.asarray((5,)).reshape((1, 1, 1)),
values=_test_values((3, 2, 4)),
expected=5 * np.ones((3, 2, 4)))
@test_util.run_deprecated_v1
def test1x1xN(self):
weights = np.asarray((5, 7, 11, 3)).reshape((1, 1, 4))
self._test_valid(
weights=weights,
values=_test_values((3, 2, 4)),
expected=np.tile(weights, reps=(3, 2, 1)))
@test_util.run_deprecated_v1
def test1xNx1(self):
weights = np.asarray((5, 11)).reshape((1, 2, 1))
self._test_valid(
weights=weights,
values=_test_values((3, 2, 4)),
expected=np.tile(weights, reps=(3, 1, 4)))
@test_util.run_deprecated_v1
def test1xNxN(self):
weights = np.asarray((5, 7, 11, 3, 2, 13, 7, 5)).reshape((1, 2, 4))
self._test_valid(
weights=weights,
values=_test_values((3, 2, 4)),
expected=np.tile(weights, reps=(3, 1, 1)))
@test_util.run_deprecated_v1
def testNx1x1(self):
weights = np.asarray((5, 7, 11)).reshape((3, 1, 1))
self._test_valid(
weights=weights,
values=_test_values((3, 2, 4)),
expected=np.tile(weights, reps=(1, 2, 4)))
@test_util.run_deprecated_v1
def testNx1xN(self):
weights = np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3)).reshape((3, 1, 4))
self._test_valid(
weights=weights,
values=_test_values((3, 2, 4)),
expected=np.tile(weights, reps=(1, 2, 1)))
@test_util.run_deprecated_v1
def testNxNxN(self):
weights = np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4))
self._test_valid(
weights=weights, values=_test_values((3, 2, 4)), expected=weights)
def _test_invalid(self, weights, values):
error_msg = 'weights can not be broadcast to values'
with self.assertRaisesRegex(ValueError, error_msg):
weights_broadcast_ops.broadcast_weights(weights=weights, values=values)
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
dynamic_op = weights_broadcast_ops.broadcast_weights(
weights=weights_placeholder, values=values_placeholder)
with self.cached_session():
with self.assertRaisesRegex(errors_impl.OpError, error_msg):
dynamic_op.eval(feed_dict={
weights_placeholder: weights,
values_placeholder: values,
})
@test_util.run_deprecated_v1
def testInvalid1(self):
self._test_invalid(weights=np.asarray((5,)), values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalid1x1(self):
self._test_invalid(
weights=np.asarray((5,)).reshape((1, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidPrefixMatch(self):
self._test_invalid(
weights=np.asarray((5, 7, 11, 3, 2, 12)).reshape((3, 2)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidSuffixMatch(self):
self._test_invalid(
weights=np.asarray((5, 7, 11, 3, 2, 12, 7, 5)).reshape((2, 4)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidOnesExtraDim(self):
self._test_invalid(
weights=np.asarray((5,)).reshape((1, 1, 1, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidPrefixMatchExtraDim(self):
self._test_invalid(
weights=np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4, 1)),
values=_test_values((3, 2, 4)))
@test_util.run_deprecated_v1
def testInvalidSuffixMatchExtraDim(self):
self._test_invalid(
weights=np.asarray((
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((1, 3, 2, 4)),
values=_test_values((3, 2, 4)))
if __name__ == '__main__':
test.main()