- assertEquals -> assertEqual - assertRaisesRegexp -> assertRegexpMatches - assertRegexpMatches -> assertRegex PiperOrigin-RevId: 319118081 Change-Id: Ieb457128522920ab55d6b69a7f244ab798a7d689
308 lines
10 KiB
Python
308 lines
10 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for broadcast rules."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.framework import dtypes as dtypes_lib
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import weights_broadcast_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def _test_values(shape):
|
|
return np.reshape(np.cumsum(np.ones(shape), dtype=np.int32), newshape=shape)
|
|
|
|
|
|
class AssertBroadcastableTest(test.TestCase):
|
|
|
|
def setUp(self):
|
|
ops.reset_default_graph()
|
|
|
|
def _test_valid(self, weights, values):
|
|
static_op = weights_broadcast_ops.assert_broadcastable(
|
|
weights=weights, values=values)
|
|
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
dynamic_op = weights_broadcast_ops.assert_broadcastable(
|
|
weights=weights_placeholder, values=values_placeholder)
|
|
with self.cached_session():
|
|
static_op.run()
|
|
dynamic_op.run(feed_dict={
|
|
weights_placeholder: weights,
|
|
values_placeholder: values,
|
|
})
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testScalar(self):
|
|
self._test_valid(weights=5, values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1x1x1(self):
|
|
self._test_valid(
|
|
weights=np.asarray((5,)).reshape((1, 1, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1x1xN(self):
|
|
self._test_valid(
|
|
weights=np.asarray((5, 7, 11, 3)).reshape((1, 1, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1xNx1(self):
|
|
self._test_valid(
|
|
weights=np.asarray((5, 11)).reshape((1, 2, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1xNxN(self):
|
|
self._test_valid(
|
|
weights=np.asarray((5, 7, 11, 3, 2, 13, 7, 5)).reshape((1, 2, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNx1x1(self):
|
|
self._test_valid(
|
|
weights=np.asarray((5, 7, 11)).reshape((3, 1, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNx1xN(self):
|
|
self._test_valid(
|
|
weights=np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3)).reshape((3, 1, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNxNxN(self):
|
|
self._test_valid(
|
|
weights=np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
|
|
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
def _test_invalid(self, weights, values):
|
|
error_msg = 'weights can not be broadcast to values'
|
|
with self.assertRaisesRegex(ValueError, error_msg):
|
|
weights_broadcast_ops.assert_broadcastable(weights=weights, values=values)
|
|
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
dynamic_op = weights_broadcast_ops.assert_broadcastable(
|
|
weights=weights_placeholder, values=values_placeholder)
|
|
with self.cached_session():
|
|
with self.assertRaisesRegex(errors_impl.OpError, error_msg):
|
|
dynamic_op.run(feed_dict={
|
|
weights_placeholder: weights,
|
|
values_placeholder: values,
|
|
})
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalid1(self):
|
|
self._test_invalid(weights=np.asarray((5,)), values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalid1x1(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5,)).reshape((1, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidPrefixMatch(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5, 7, 11, 3, 2, 12)).reshape((3, 2)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidSuffixMatch(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5, 7, 11, 3, 2, 12, 7, 5)).reshape((2, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidOnesExtraDim(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5,)).reshape((1, 1, 1, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidPrefixMatchExtraDim(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
|
|
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidSuffixMatchExtraDim(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
|
|
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((1, 3, 2, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
|
|
class BroadcastWeightsTest(test.TestCase):
|
|
|
|
def setUp(self):
|
|
ops.reset_default_graph()
|
|
|
|
def _test_valid(self, weights, values, expected):
|
|
static_op = weights_broadcast_ops.broadcast_weights(
|
|
weights=weights, values=values)
|
|
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
dynamic_op = weights_broadcast_ops.broadcast_weights(
|
|
weights=weights_placeholder, values=values_placeholder)
|
|
with self.cached_session():
|
|
self.assertAllEqual(expected, self.evaluate(static_op))
|
|
self.assertAllEqual(expected, dynamic_op.eval(feed_dict={
|
|
weights_placeholder: weights,
|
|
values_placeholder: values,
|
|
}))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testScalar(self):
|
|
self._test_valid(
|
|
weights=5,
|
|
values=_test_values((3, 2, 4)),
|
|
expected=5 * np.ones((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1x1x1(self):
|
|
self._test_valid(
|
|
weights=np.asarray((5,)).reshape((1, 1, 1)),
|
|
values=_test_values((3, 2, 4)),
|
|
expected=5 * np.ones((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1x1xN(self):
|
|
weights = np.asarray((5, 7, 11, 3)).reshape((1, 1, 4))
|
|
self._test_valid(
|
|
weights=weights,
|
|
values=_test_values((3, 2, 4)),
|
|
expected=np.tile(weights, reps=(3, 2, 1)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1xNx1(self):
|
|
weights = np.asarray((5, 11)).reshape((1, 2, 1))
|
|
self._test_valid(
|
|
weights=weights,
|
|
values=_test_values((3, 2, 4)),
|
|
expected=np.tile(weights, reps=(3, 1, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def test1xNxN(self):
|
|
weights = np.asarray((5, 7, 11, 3, 2, 13, 7, 5)).reshape((1, 2, 4))
|
|
self._test_valid(
|
|
weights=weights,
|
|
values=_test_values((3, 2, 4)),
|
|
expected=np.tile(weights, reps=(3, 1, 1)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNx1x1(self):
|
|
weights = np.asarray((5, 7, 11)).reshape((3, 1, 1))
|
|
self._test_valid(
|
|
weights=weights,
|
|
values=_test_values((3, 2, 4)),
|
|
expected=np.tile(weights, reps=(1, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNx1xN(self):
|
|
weights = np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3)).reshape((3, 1, 4))
|
|
self._test_valid(
|
|
weights=weights,
|
|
values=_test_values((3, 2, 4)),
|
|
expected=np.tile(weights, reps=(1, 2, 1)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNxNxN(self):
|
|
weights = np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
|
|
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4))
|
|
self._test_valid(
|
|
weights=weights, values=_test_values((3, 2, 4)), expected=weights)
|
|
|
|
def _test_invalid(self, weights, values):
|
|
error_msg = 'weights can not be broadcast to values'
|
|
with self.assertRaisesRegex(ValueError, error_msg):
|
|
weights_broadcast_ops.broadcast_weights(weights=weights, values=values)
|
|
weights_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
values_placeholder = array_ops.placeholder(dtypes_lib.float32)
|
|
dynamic_op = weights_broadcast_ops.broadcast_weights(
|
|
weights=weights_placeholder, values=values_placeholder)
|
|
with self.cached_session():
|
|
with self.assertRaisesRegex(errors_impl.OpError, error_msg):
|
|
dynamic_op.eval(feed_dict={
|
|
weights_placeholder: weights,
|
|
values_placeholder: values,
|
|
})
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalid1(self):
|
|
self._test_invalid(weights=np.asarray((5,)), values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalid1x1(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5,)).reshape((1, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidPrefixMatch(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5, 7, 11, 3, 2, 12)).reshape((3, 2)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidSuffixMatch(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5, 7, 11, 3, 2, 12, 7, 5)).reshape((2, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidOnesExtraDim(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((5,)).reshape((1, 1, 1, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidPrefixMatchExtraDim(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
|
|
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((3, 2, 4, 1)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testInvalidSuffixMatchExtraDim(self):
|
|
self._test_invalid(
|
|
weights=np.asarray((
|
|
5, 7, 11, 3, 2, 12, 7, 5, 2, 17, 11, 3,
|
|
2, 17, 11, 3, 5, 7, 11, 3, 2, 12, 7, 5)).reshape((1, 3, 2, 4)),
|
|
values=_test_values((3, 2, 4)))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|