STT-tensorflow/tensorflow/python/kernel_tests/reshape_op_test.py
Kibeom Kim 431bb29171 Add missing gradient_checker_v2.max_error() checks in tests.
PiperOrigin-RevId: 324095184
Change-Id: I9e3f1e5fc4f5f22b3b3cf4e8196a9b2e28840ed8
2020-07-30 15:46:06 -07:00

220 lines
7.8 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.ops.reshape_op."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradient_checker_v2
from tensorflow.python.platform import test
class ReshapeTest(test.TestCase):
def _testReshape(self, x, y, use_gpu=False):
with self.cached_session(use_gpu=use_gpu):
np_ans = x.reshape(y)
tf_ans = array_ops.reshape(x, y)
out = self.evaluate(tf_ans)
self.assertEqual(tf_ans.get_shape(), out.shape)
self.assertShapeEqual(np_ans, tf_ans)
# Repeat with an int64 shape tensor.
y64 = constant_op.constant(y, dtype=dtypes.int64)
tf_ans = array_ops.reshape(x, y64)
out = self.evaluate(tf_ans)
self.assertEqual(tf_ans.get_shape(), out.shape)
self.assertShapeEqual(np_ans, tf_ans)
def _testZeroDimReshape(self, x, shape, expected, use_gpu=False):
with self.cached_session(use_gpu=use_gpu):
y = array_ops.reshape(x, shape)
out = self.evaluate(y)
self.assertEqual(expected, out.shape)
# Repeat with an int64 shape tensor.
shape64 = constant_op.constant(shape, dtype=dtypes.int64)
y = array_ops.reshape(x, shape64)
out = self.evaluate(y)
self.assertEqual(expected, out.shape)
def _testBothReshape(self, x, y):
self._testReshape(x, y, False)
self._testReshape(x, y, True)
def testBoolBasic(self):
x = np.arange(1., 7.).reshape([1, 6]) > 3
self._testBothReshape(x, [2, 3])
def testFloatBasic(self):
x = np.arange(1., 7.).reshape([1, 6]).astype(np.float32)
self._testBothReshape(x, [2, 3])
def testDoubleBasic(self):
x = np.arange(1., 7.).reshape([1, 6]).astype(np.float64)
self._testBothReshape(x, [2, 3])
def testInt32Basic(self):
x = np.arange(1., 7.).reshape([1, 6]).astype(np.int32)
self._testBothReshape(x, [2, 3])
def testComplex64Basic(self):
x = np.arange(1., 7.).reshape([1, 6]).astype(np.complex64)
self._testBothReshape(x, [2, 3])
def testComplex128Basic(self):
x = np.arange(1., 7.).reshape([1, 6]).astype(np.complex128)
self._testBothReshape(x, [2, 3])
def testFloatReshapeThreeDimensions(self):
x = np.arange(1., 28.).reshape([1, 27]).astype(np.float32)
self._testBothReshape(x, [3, 3, 3])
def testFloatUnspecifiedDimOnly(self):
x = np.arange(1., 7.).reshape([6]).astype(np.float32)
self._testBothReshape(x, [-1])
def testFloatUnspecifiedDimBegin(self):
x = np.arange(1., 7.).reshape([6]).astype(np.float32)
self._testBothReshape(x, [-1, 2])
def testFloatUnspecifiedDimEnd(self):
x = np.arange(1., 7.).reshape([6]).astype(np.float32)
self._testBothReshape(x, [3, -1])
def testZeroDimBasic(self):
x = np.zeros([0, 6]).astype(np.float32)
self._testBothReshape(x, [0, 2, 3])
def testZeroDimReshapeR1(self):
x = np.zeros([0, 6]).astype(np.float32)
self._testBothReshape(x, [-1])
def testZeroDimReshapeR3(self):
x = np.zeros([0, 6]).astype(np.float32)
self._testBothReshape(x, [-1, 2, 3])
# TODO(vrv): Add tests for failure conditions once python test_util
# reports errors.
def testFloatReshapeGradThreeDimensions(self):
x = np.arange(1., 25.).reshape([2, 3, 4]).astype(np.float32)
input_tensor = constant_op.constant(x)
def reshape(x):
return array_ops.reshape(x, [1, 8, 3])
with self.cached_session():
err = gradient_checker_v2.max_error(
*gradient_checker_v2.compute_gradient(reshape, [input_tensor]))
self.assertLess(err, 1e-3)
def testFloatEmpty(self):
x = np.empty((0, 0, 0, 0), dtype=np.float32)
self._testBothReshape(x, [1, 2, 3, 0])
self._testBothReshape(x, [1, 0, 0, 4])
self._testBothReshape(x, [0, 0, 0, 0])
self._testBothReshape(x, [1, 2, 0])
self._testBothReshape(x, [0, 0, 0])
self._testBothReshape(x, [1, -1, 5])
def testZeroDimWithUnspecifiedDim(self):
for use_gpu in (True, False):
self._testZeroDimReshape(x=np.zeros([0, 6]).astype(np.float32),
shape=[0, -1, 3],
expected=(0, 2, 3),
use_gpu=use_gpu)
@test_util.run_deprecated_v1
def testErrors(self):
y = constant_op.constant(0.0, shape=[23, 29, 31])
with self.assertRaisesRegex(ValueError, "must be evenly divisible by 17"):
array_ops.reshape(y, [17, -1])
z = constant_op.constant(0.0, shape=[32, 128])
with self.assertRaisesRegex(ValueError,
"Cannot reshape a tensor with 4096 elements"):
array_ops.reshape(z, [4095])
def testPartialShapes(self):
# Testing unknown shapes in graph building.
with ops.Graph().as_default():
x = array_ops.placeholder(dtypes.float32)
# Unknown input shape, partial new shape.
y = array_ops.reshape(x, [1, 1, -1, 1])
self.assertEqual([1, 1, None, 1], y.get_shape().as_list())
# Unknown input shape, unknown new shape.
y = array_ops.reshape(x, array_ops.placeholder(dtypes.int32))
self.assertEqual(None, y.get_shape().ndims)
# Unknown input shape, known rank for new shape.
y = array_ops.reshape(x, array_ops.placeholder(dtypes.int32, shape=(3,)))
self.assertEqual([None, None, None], y.get_shape().as_list())
# Unknown input shape, partial new shape using `tf.stack()`.
y = array_ops.reshape(x, [array_ops.placeholder(dtypes.int32), 37])
self.assertEqual([None, 37], y.get_shape().as_list())
# Unknown input shape, partial new shape using `tf.concat()`.
y = array_ops.reshape(
x,
array_ops.concat(
[array_ops.placeholder(
dtypes.int32, shape=(2,)), [37, 42]], 0))
self.assertEqual([None, None, 37, 42], y.get_shape().as_list())
# Unknown input shape, partial new shape using `tf.shape()`.
y = array_ops.reshape(
x,
array_ops.shape(
array_ops.placeholder(
dtypes.float32, shape=[None, 37, None])))
self.assertEqual([None, 37, None], y.get_shape().as_list())
def testTensorShape(self):
x = array_ops.zeros([1, 100])
y = array_ops.reshape(
x, [tensor_shape.Dimension(100),
tensor_shape.Dimension(1)])
self.assertEqual([100, 1], y.get_shape().as_list())
y = array_ops.reshape(x, tensor_shape.TensorShape([100, 1]))
self.assertEqual([100, 1], y.get_shape().as_list())
def testInt64Shape(self):
with ops.device("/device:CPU:0"):
x = array_ops.zeros([50000, 50000], dtype=dtypes.bool)
# Provide dimension larger than int32
y = array_ops.reshape(x, [50000**2])
self.assertEqual([50000**2], y.get_shape().as_list())
# Even if first dimension is within int32, ensure we correctly go to int64
y = array_ops.reshape(x, [1, 50000**2])
self.assertEqual([1, 50000**2], y.get_shape().as_list())
if __name__ == "__main__":
test.main()