453 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			453 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
# ==============================================================================
 | 
						|
"""Tests for tensorflow.ops.Einsum."""
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from tensorflow.python.client import session
 | 
						|
from tensorflow.python.framework import constant_op
 | 
						|
from tensorflow.python.framework import dtypes
 | 
						|
from tensorflow.python.framework import errors
 | 
						|
from tensorflow.python.framework import ops
 | 
						|
from tensorflow.python.framework import test_util
 | 
						|
from tensorflow.python.ops import array_ops
 | 
						|
from tensorflow.python.ops import gen_linalg_ops
 | 
						|
from tensorflow.python.ops import gradient_checker_v2
 | 
						|
from tensorflow.python.ops import special_math_ops
 | 
						|
from tensorflow.python.ops import variables
 | 
						|
from tensorflow.python.platform import benchmark
 | 
						|
from tensorflow.python.platform import test
 | 
						|
 | 
						|
 | 
						|
@test_util.run_all_without_tensor_float_32(
 | 
						|
    'Tests einsum, which sometimes does a matmul with cuBLAS')
 | 
						|
class EinsumOpTest(test.TestCase):
 | 
						|
 | 
						|
  def _check(self, s, *input_shapes, **kwargs):
 | 
						|
    dtype = kwargs.pop('dtype', np.float32)
 | 
						|
    r = np.random.RandomState(0)
 | 
						|
    inputs = []
 | 
						|
    for shape in input_shapes:
 | 
						|
      with self.subTest(s=s, shape=shape):
 | 
						|
        arr = np.array(r.randn(*shape)).astype(dtype)
 | 
						|
        if dtype == np.complex64 or dtype == np.complex128:
 | 
						|
          arr += 1j * np.array(r.randn(*shape)).astype(dtype)
 | 
						|
        inputs.append(arr)
 | 
						|
    input_tensors = [constant_op.constant(x, shape=x.shape) for x in inputs]
 | 
						|
    a = np.einsum(s, *inputs)
 | 
						|
    b = self.evaluate(gen_linalg_ops.einsum(input_tensors, s))
 | 
						|
    self.assertAllClose(a, b, atol=1e-4, rtol=1e-4)
 | 
						|
 | 
						|
  def testUnary(self):
 | 
						|
    self._check('->', ())
 | 
						|
    self._check('ab->', (3, 3))
 | 
						|
    self._check('ab->ab', (3, 3))
 | 
						|
    self._check('abc->b', (3, 4, 5))
 | 
						|
    self._check('abc->ca', (3, 4, 5))
 | 
						|
    self._check('abc->cab', (3, 4, 5))
 | 
						|
 | 
						|
  def testUnaryWithRepeatedLabels(self):
 | 
						|
    self._check('aa->', (3, 3))
 | 
						|
    self._check('aa->a', (3, 3))
 | 
						|
    self._check('aaa->', (3, 3, 3))
 | 
						|
    self._check('aaa->a', (3, 3, 3))
 | 
						|
    self._check('aab->a', (3, 3, 4))
 | 
						|
    self._check('aabcc->a', (3, 3, 5, 4, 4))
 | 
						|
    self._check('aabcc->ac', (3, 3, 5, 4, 4))
 | 
						|
    self._check('aabcd->ad', (3, 3, 5, 4, 4))
 | 
						|
 | 
						|
  def testUnaryEllipsis(self):
 | 
						|
    # Unary cases with ellipsis.
 | 
						|
    # Edge cases.
 | 
						|
    self._check('...->...', ())
 | 
						|
    self._check('...->', ())
 | 
						|
    self._check('->...', ())
 | 
						|
 | 
						|
    # Tests from dask
 | 
						|
    self._check('a...a->a...', (2, 2))
 | 
						|
    self._check('a...a->', (2, 2))
 | 
						|
    self._check('a...a->...', (2, 5, 1, 2))
 | 
						|
    self._check('a...a->a...', (2, 1, 2))
 | 
						|
    self._check('a...a->a...', (2, 3, 4, 5, 2))
 | 
						|
 | 
						|
    # Regular cases.
 | 
						|
    self._check('...ijk->...ki', (3, 4, 5))
 | 
						|
    self._check('...ijk->...ki', (1, 3, 4, 5))
 | 
						|
    self._check('...ijk->...ki', (2, 2, 3, 4, 5))
 | 
						|
 | 
						|
    # Repeated indices.
 | 
						|
    self._check('i...ii->...i', (3, 2, 3, 3))
 | 
						|
 | 
						|
  def testBinarySimple(self):
 | 
						|
    # Binary cases in XLA mode must have either (a) each index appearing exactly
 | 
						|
    # once in both the inputs (batch or contraction index), or (b) appearing
 | 
						|
    # exactly once in an input and in the output (free index).
 | 
						|
    self._check(',->', (), ())
 | 
						|
    self._check('a,a->', (3,), (3,))
 | 
						|
    self._check('a,a->a', (3,), (3,))
 | 
						|
    self._check('ab,b->a', (3, 4), (4,))
 | 
						|
    self._check('ab,ab->', (3, 4), (3, 4))
 | 
						|
    self._check('ab,bc->ac', (3, 4), (4, 5))
 | 
						|
    self._check('nij,jk->nik', (5, 2, 3), (3, 4))
 | 
						|
    self._check('abc,bad->abcd', (1, 2, 3), (2, 1, 4))
 | 
						|
    # Based on https://github.com/google/jax/issues/37#issuecomment-448572187
 | 
						|
    self._check('sa,shb->shab', (2, 1), (2, 3, 4))
 | 
						|
 | 
						|
  def testReducedIndices(self):
 | 
						|
    self._check('ba,b->', (3, 2), (3,))
 | 
						|
    self._check('ab,ab->', (3, 4), (3, 4))
 | 
						|
    self._check('abce,badf->abcd', (1, 2, 3, 4), (2, 1, 4, 3))
 | 
						|
 | 
						|
  def testRepeatedIndices(self):
 | 
						|
    # Repeated indices.
 | 
						|
    self._check('ijj,k->ik', (2, 3, 3), (4,))
 | 
						|
    self._check('aba,a->b', (3, 4, 3), (3,))
 | 
						|
    # From https://github.com/dask/dask/pull/3412#discussion_r182413444
 | 
						|
    self._check('aab,bc->ac', (2, 2, 3), (3, 4))
 | 
						|
    self._check('aab,bcc->ac', (2, 2, 3), (3, 4, 4))
 | 
						|
 | 
						|
  def testEllipsis(self):
 | 
						|
    # Batch matmul with ellipsis but without broadcasting.
 | 
						|
    self._check('...mk,...kn->...mn', (5, 1, 2, 3), (5, 1, 3, 4))
 | 
						|
    # Empty batch dimensions.
 | 
						|
    self._check('...mk,...kn->...mn', (2, 3), (3, 4))
 | 
						|
    # Tensor contraction with transpose.
 | 
						|
    self._check('...ija,aijb...->ba...ij', (1, 2, 2, 3, 1), (1, 2, 3, 4, 1, 2))
 | 
						|
    # Output subscripts may omit ellipsis when batch shape is empty.
 | 
						|
    self._check('...mk,...kn->mn', (2, 3), (3, 4))
 | 
						|
    self._check('...mk,kn->mn', (2, 3), (3, 4))
 | 
						|
    self._check('mk,...kn->mn', (2, 3), (3, 4))
 | 
						|
 | 
						|
  def testBroadcasting(self):
 | 
						|
    # Batch matmul with broadcasting.
 | 
						|
    self._check('...ij,...jk->...ik', (1, 2, 3), (3, 5))
 | 
						|
    self._check('...ij,...jk->...ik', (2, 3), (1, 3, 5))
 | 
						|
    self._check('...ij,...jk->...ik', (5, 2, 3), (3, 5))
 | 
						|
    self._check('...ij,...jk->...ik', (2, 3), (5, 3, 5))
 | 
						|
    self._check('...ij,...jk->...ik', (3, 1, 2, 3), (1, 1, 7, 3, 5))
 | 
						|
    self._check('i...j,j...k->...ik', (2, 1, 3, 1, 3), (3, 1, 7, 5))
 | 
						|
    # Following 2 from https://stackoverflow.com/a/19203475/1611416
 | 
						|
    self._check('...abc,...abcd->...d', (1, 1, 2, 3, 4), (5, 2, 3, 4, 6))
 | 
						|
    self._check('ab...,b->ab...', (2, 3, 1, 1, 5), (3,))
 | 
						|
    self._check('i...j,j...k->i...k', (3, 1, 2, 2), (2, 2, 3, 1, 4))
 | 
						|
 | 
						|
  def testBroadcastingWithRepeatedIndices(self):
 | 
						|
    # Broadcasting with repeated indices.
 | 
						|
    self._check('ij,jk...k->i...', (3, 2), (2, 4, 1, 4))
 | 
						|
    self._check('ij,jk...k->...i', (3, 2), (2, 4, 5, 4))
 | 
						|
    self._check('ijj,jk...k->i...', (3, 2, 2), (2, 4, 1, 4))
 | 
						|
    self._check('i...jj,jk...k->i...', (3, 3, 1, 2, 2), (2, 4, 1, 5, 4))
 | 
						|
 | 
						|
  def testDtypes(self):
 | 
						|
    bfloat16 = dtypes.bfloat16.as_numpy_dtype
 | 
						|
 | 
						|
    def check(dtype):
 | 
						|
      r = np.random.RandomState(0)
 | 
						|
      equation = 'ij,jk->ik'
 | 
						|
      input_shapes = [(2, 2), (2, 2)]
 | 
						|
      inputs = []
 | 
						|
      for shape in input_shapes:
 | 
						|
        with self.subTest(dtype=dtype, shape=shape):
 | 
						|
          arr = np.array(r.randn(*shape)).astype(dtype)
 | 
						|
          if dtype == np.complex64 or dtype == np.complex128:
 | 
						|
            arr += 1j * np.array(r.randn(*shape)).astype(dtype)
 | 
						|
          inputs.append(arr)
 | 
						|
      input_tensors = [constant_op.constant(x) for x in inputs]
 | 
						|
      if dtype == bfloat16:
 | 
						|
        # np.einsum doesn't support bfloat16.
 | 
						|
        a = np.einsum(equation,
 | 
						|
                      *[x.astype(np.float32) for x in inputs]).astype(dtype)
 | 
						|
      else:
 | 
						|
        a = np.einsum(equation, *inputs)
 | 
						|
 | 
						|
      b = self.evaluate(gen_linalg_ops.einsum(input_tensors, equation))
 | 
						|
      tol = 1e-2 if dtype == bfloat16 else 1e-4
 | 
						|
      self.assertAllClose(a, b, atol=tol, rtol=tol)
 | 
						|
 | 
						|
    for dtype in [
 | 
						|
        bfloat16, np.float32, np.float64, np.complex64, np.complex128, np.int32,
 | 
						|
        np.int64
 | 
						|
    ]:
 | 
						|
      check(dtype)
 | 
						|
 | 
						|
  @test_util.disable_xla('b/131919749')
 | 
						|
  @test_util.run_in_graph_and_eager_modes
 | 
						|
  def testInvalid(self):
 | 
						|
    r = np.random.RandomState(0)
 | 
						|
    cases = [
 | 
						|
        # incorrect rank.
 | 
						|
        ('ij,jk->ik', r.randn(1, 2, 3), r.randn(3, 4)),
 | 
						|
        ('...ij,jk->ik', r.randn(3), r.randn(3, 4)),
 | 
						|
        # inconsistent dimensions.
 | 
						|
        ('ij,jk->ik', r.randn(2, 3), r.randn(4, 4)),
 | 
						|
        # broadcasting is invalid
 | 
						|
        ('...ij,...jk->...ik', r.randn(5, 2, 3), r.randn(7, 3, 4)),
 | 
						|
        # output should have ellipsis when broadcasting shape is
 | 
						|
        # non-empty.
 | 
						|
        ('...ij,...jk->ik', r.randn(2, 2, 3), r.randn(3, 4)),
 | 
						|
    ]
 | 
						|
    for args in cases:
 | 
						|
      with self.subTest(args=args):
 | 
						|
        with self.assertRaises((ValueError, errors.InvalidArgumentError)):
 | 
						|
          _ = self.evaluate(gen_linalg_ops.einsum(args[1:], args[0]))
 | 
						|
 | 
						|
        placeholders = [
 | 
						|
            array_ops.placeholder_with_default(x, shape=None) for x in args[1:]
 | 
						|
        ]
 | 
						|
        with self.assertRaises((ValueError, errors.InvalidArgumentError)):
 | 
						|
          _ = self.evaluate(gen_linalg_ops.einsum(placeholders, args[0]))
 | 
						|
 | 
						|
  @test_util.run_in_graph_and_eager_modes
 | 
						|
  def testPlaceholder(self):
 | 
						|
 | 
						|
    def check(equation, *input_and_placeholder_shapes):
 | 
						|
      r = np.random.RandomState(0)
 | 
						|
      inputs = []
 | 
						|
      input_placeholders = []
 | 
						|
      for actual_shape, placeholder_shape in input_and_placeholder_shapes:
 | 
						|
        with self.subTest(equation=equation, actual_shape=actual_shape,
 | 
						|
                          placeholder_shape=placeholder_shape):
 | 
						|
          input_np = np.array(r.randn(*actual_shape))
 | 
						|
          inputs.append(input_np)
 | 
						|
          input_placeholders.append(
 | 
						|
              array_ops.placeholder_with_default(input_np, placeholder_shape))
 | 
						|
 | 
						|
      a = np.einsum(equation, *inputs)
 | 
						|
      b = self.evaluate(gen_linalg_ops.einsum(input_placeholders, equation))
 | 
						|
      self.assertAllClose(a, b, atol=1e-4, rtol=1e-4)
 | 
						|
 | 
						|
    check('bijl,bjkm->bik', ((9, 2, 3, 5), (None, None, None, 5)),
 | 
						|
          ((9, 3, 4, 7), (None, None, 4, None)))
 | 
						|
    check('bijl,bjkm->bik', ((9, 2, 3, 5), None), ((9, 3, 4, 7), None))
 | 
						|
    check('...ij,...->...i', ((4, 3, 1, 2), (None, 3, None, 2)),
 | 
						|
          ((4, 3), (None, 3)))
 | 
						|
    check('...ij,...jk->...ik', ((3, 1, 2, 3), None), ((1, 7, 3, 4), None))
 | 
						|
 | 
						|
  def testOutputRepeatedLabels(self):
 | 
						|
    # This is the reverse operation of generalized traces, to be used for
 | 
						|
    # computing symbolic gradients of einsum. Note: this operation is not
 | 
						|
    # supported by np.einsum as it's only required for gradients.
 | 
						|
    r = np.random.RandomState(0)
 | 
						|
    a = r.randn(2, 2)
 | 
						|
    s = 'a->aa'
 | 
						|
    diag_a = np.diag(np.diag(a))
 | 
						|
    b = self.evaluate(gen_linalg_ops.einsum([np.diag(a)], s))
 | 
						|
    self.assertAllClose(diag_a, b, atol=1e-4, rtol=1e-4)
 | 
						|
 | 
						|
  def testEmpty(self):
 | 
						|
    def check(equation, input_shapes, output_shape):
 | 
						|
      # All these cases result in an output filled with zeros, so we don't call
 | 
						|
      # np.einsum. Also np.einsum doesn't support generalized diagonals which
 | 
						|
      # are needed for EinsumOp gradients.
 | 
						|
      r = np.random.RandomState(0)
 | 
						|
      inputs = [np.array(r.randn(*shape)) for shape in input_shapes]
 | 
						|
      output = self.evaluate(gen_linalg_ops.einsum(inputs, equation))
 | 
						|
      self.assertAllClose(output, np.zeros(output_shape), atol=1e-4, rtol=1e-4)
 | 
						|
 | 
						|
    # Contractions along zero-sized dimensions.
 | 
						|
    check('ab,bc->ac', [(0, 10), (10, 10)], (0, 10))
 | 
						|
    # From transformer xl.
 | 
						|
    check('ibnd,ijbn->jnd', [(1, 0, 5, 10), (1, 1, 0, 5)], (1, 5, 10))
 | 
						|
 | 
						|
  def testEmptyWithRepeatedLabels(self):
 | 
						|
 | 
						|
    def check(equation, input_shapes, output_shape):
 | 
						|
      # All these cases result in an output filled with zeros, so we don't call
 | 
						|
      # np.einsum. Also np.einsum doesn't support generalized diagonals which
 | 
						|
      # are needed for EinsumOp gradients.
 | 
						|
      r = np.random.RandomState(0)
 | 
						|
      inputs = [np.array(r.randn(*shape)) for shape in input_shapes]
 | 
						|
      output = self.evaluate(gen_linalg_ops.einsum(inputs, equation))
 | 
						|
      self.assertAllClose(output, np.zeros(output_shape), atol=1e-4, rtol=1e-4)
 | 
						|
 | 
						|
    # Generalized traces with zero-sized dimensions.
 | 
						|
    check('aab,bc->ac', [(0, 0, 10), (10, 10)], (0, 10))
 | 
						|
    check('aaab,bc->c', [(0, 0, 0, 3), (3, 4)], (4,))
 | 
						|
    # Generalized diagonals along with contraction.
 | 
						|
    check('ab,bc->aaca', [(0, 10), (10, 5)], (0, 0, 5, 0))
 | 
						|
    check('ab,bc->aaa', [(0, 10), (10, 5)], (0, 0, 0))
 | 
						|
    check('ab,bc->cc', [(0, 10), (10, 5)], (5, 5))
 | 
						|
    check('ab,ab->aaa', [(0, 5), (0, 5)], (0, 0, 0))
 | 
						|
 | 
						|
 | 
						|
@test_util.run_all_in_graph_and_eager_modes
 | 
						|
@test_util.run_all_without_tensor_float_32(
 | 
						|
    "Tests einsum's gradient, which sometimes does a matmul with cuBLAS")
 | 
						|
class EinsumGradTest(test.TestCase):
 | 
						|
 | 
						|
  def _check_gradient(self, s, *input_shapes):
 | 
						|
    with self.cached_session():
 | 
						|
      r = np.random.RandomState(seed=0)
 | 
						|
      for dtype in (np.float32, np.float64, np.complex64, np.complex128):
 | 
						|
        with self.subTest(s=s, dtype=dtype):
 | 
						|
          tol = 10 * np.sqrt(np.finfo(dtype).resolution)
 | 
						|
          if dtype in (np.complex64, np.complex128):
 | 
						|
            inputs = [
 | 
						|
                np.array(r.randn(*shape), dtype) +
 | 
						|
                1j * np.array(r.randn(*shape), dtype) for shape in input_shapes
 | 
						|
            ]
 | 
						|
          else:
 | 
						|
            inputs = [
 | 
						|
                np.array(r.randn(*shape), dtype) for shape in input_shapes]
 | 
						|
          input_tensors = [
 | 
						|
              constant_op.constant(x, shape=x.shape) for x in inputs]
 | 
						|
          analytical, numerical = gradient_checker_v2.compute_gradient(
 | 
						|
              lambda *xs: gen_linalg_ops.einsum(xs, s), input_tensors)
 | 
						|
          self.assertLess(
 | 
						|
              gradient_checker_v2.max_error(analytical, numerical), tol)
 | 
						|
 | 
						|
  def testUnary(self):
 | 
						|
    # Unary cases.
 | 
						|
    self._check_gradient('->', ())
 | 
						|
    self._check_gradient('aaa->a', (3, 3, 3))
 | 
						|
    self._check_gradient('aabcd->ad', (3, 3, 5, 4, 4))
 | 
						|
    self._check_gradient('aabcd->add', (3, 3, 5, 4, 4))
 | 
						|
    self._check_gradient('abcd->da', (3, 5, 4, 2))
 | 
						|
 | 
						|
  def testUnaryEllipsis(self):
 | 
						|
    self._check_gradient('...->...', ())
 | 
						|
    self._check_gradient('...->', ())
 | 
						|
    self._check_gradient('->...', ())
 | 
						|
 | 
						|
    # Tests from dask
 | 
						|
    self._check_gradient('a...a->a...', (2, 2))
 | 
						|
    self._check_gradient('a...a->', (2, 2))
 | 
						|
    self._check_gradient('a...a->...', (2, 5, 1, 2))
 | 
						|
    self._check_gradient('a...a->a...', (2, 1, 2))
 | 
						|
    self._check_gradient('a...a->a...', (2, 3, 4, 5, 2))
 | 
						|
 | 
						|
    self._check_gradient('...ijk->...ki', (3, 4, 5))
 | 
						|
    self._check_gradient('...ijk->...ki', (1, 3, 4, 5))
 | 
						|
    self._check_gradient('...ijk->...ki', (2, 2, 3, 4, 5))
 | 
						|
    self._check_gradient('ab...cd->da...', (3, 5, 2, 3, 4, 2))
 | 
						|
 | 
						|
  def testBinarySimple(self):
 | 
						|
    # Binary cases in XLA mode must have either (a) each index appearing exactly
 | 
						|
    # once in both the inputs (batch or contraction index), or (b) appearing
 | 
						|
    # exactly once in an input and in the output (free index).
 | 
						|
    self._check_gradient(',->', (), ())
 | 
						|
    self._check_gradient('a,a->', (3,), (3,))
 | 
						|
    self._check_gradient('a,a->a', (3,), (3,))
 | 
						|
    self._check_gradient('ab,b->a', (3, 4), (4,))
 | 
						|
    self._check_gradient('ab,ab->', (3, 4), (3, 4))
 | 
						|
    self._check_gradient('ab,bc->ac', (3, 4), (4, 5))
 | 
						|
    self._check_gradient('nij,jk->nik', (5, 2, 3), (3, 4))
 | 
						|
    self._check_gradient('abc,bad->abcd', (1, 2, 3), (2, 1, 4))
 | 
						|
    # Based on https://github.com/google/jax/issues/37#issuecomment-448572187
 | 
						|
    self._check_gradient('sa,shb->shab', (2, 1), (2, 3, 4))
 | 
						|
 | 
						|
  def testEmpty(self):
 | 
						|
    # From Transformer XL.
 | 
						|
    self._check_gradient('ibnd,ijbn->jnd', (1, 0, 5, 10), (1, 1, 0, 5))
 | 
						|
 | 
						|
  def testReducedIndices(self):
 | 
						|
    self._check_gradient('ba,b->', (3, 2), (3,))
 | 
						|
    self._check_gradient('ab,ab->', (3, 4), (3, 4))
 | 
						|
    self._check_gradient('ijkm,ijln->ijmn', (2, 3, 3, 4), (2, 3, 3, 2))
 | 
						|
    self._check_gradient('abce,badf->abcd', (1, 2, 3, 4), (2, 1, 4, 3))
 | 
						|
 | 
						|
  def testReducedIndicesWithRepeatedLabels(self):
 | 
						|
    self._check_gradient('abce,badf->bcba', (1, 2, 3, 4), (2, 1, 4, 3))
 | 
						|
 | 
						|
  def testRepeatedLabels(self):
 | 
						|
    # Repeated indices.
 | 
						|
    self._check_gradient('aba,a->b', (3, 4, 3), (3,))
 | 
						|
    self._check_gradient('ijj,k->ik', (2, 3, 3), (4,))
 | 
						|
    self._check_gradient('ill,k->ik', (2, 3, 3), (4,))
 | 
						|
    # From https://github.com/dask/dask/pull/3412#discussion_r182413444
 | 
						|
    self._check_gradient('aab,bc->ac', (1, 1, 3), (3, 4))
 | 
						|
    self._check_gradient('aab,bcc->ac', (2, 2, 3), (3, 4, 4))
 | 
						|
 | 
						|
  def testEmptyWithRepeatedLabels(self):
 | 
						|
    self._check_gradient('aab,bc->ac', (0, 0, 10), (10, 10))
 | 
						|
    self._check_gradient('aab,bc->ac', (1, 1, 0), (0, 10))
 | 
						|
    self._check_gradient('aaab,bc->c', (0, 0, 0, 3), (3, 4))
 | 
						|
 | 
						|
  def testBroadcasting(self):
 | 
						|
    self._check_gradient('...ij,...jk->...ik', (3, 2), (2, 4))
 | 
						|
    self._check_gradient('ij...,jk...->ik...', (3, 2, 1), (2, 4))
 | 
						|
    self._check_gradient('...ij,...jk->...ik', (3, 1, 3, 2), (1, 5, 2, 4))
 | 
						|
    self._check_gradient('i...j,j...k->i...k', (3, 1, 2, 2), (2, 2, 3, 1, 4))
 | 
						|
 | 
						|
  def testBroadcastingWithRepeatedLabels(self):
 | 
						|
    self._check_gradient('ij,jk...k->i...', (3, 2), (2, 4, 1, 4))
 | 
						|
    self._check_gradient('aab,b...c->a...c', (1, 1, 3), (3, 1, 1, 4))
 | 
						|
 | 
						|
 | 
						|
class EinsumBenchmark(test.Benchmark):
 | 
						|
  cases = [
 | 
						|
      # Unary cases.
 | 
						|
      ['ijk->i', 100],
 | 
						|
      ['ijk->kji', 100],
 | 
						|
      # Regular matmul or batch matmul.
 | 
						|
      ['ij,jk->ik', 1000],
 | 
						|
      ['ji,kj->ik', 1000],
 | 
						|
      ['ab,ab->', 100],
 | 
						|
      ['ab,ba->', 100],
 | 
						|
      ['abc,abc->', 100],
 | 
						|
      ['abc,bac->', 100],
 | 
						|
      ['abc,cba->', 100],
 | 
						|
      ['bij,bjk->bik', 100],
 | 
						|
      ['bji,bjk->bki', 100],
 | 
						|
      ['ikl,kji->kl', 100],
 | 
						|
      ['klj,lki->ij', 100],
 | 
						|
      ['ijk,ilj->kli', 100],
 | 
						|
      ['kij,mkb->ijmb', 100],
 | 
						|
      ['abcd,ad->bc', 40],
 | 
						|
      # Larger binary contractions.
 | 
						|
      ['ijk,jklm->il', 40],
 | 
						|
      ['efabc,eabcd->efd', 30],
 | 
						|
      ['fabec,abcde->fde', 30],
 | 
						|
      ['efabc,edabc->efd', 30],
 | 
						|
      ['eadbf,dfebc->ecfad', 30],
 | 
						|
      ['abcdef,bcdfg->abcdeg', 30],
 | 
						|
  ]
 | 
						|
 | 
						|
  def benchmarkEinsum(self):
 | 
						|
    for equation, dim in self.cases:
 | 
						|
      with ops.Graph().as_default(), \
 | 
						|
          session.Session(config=benchmark.benchmark_config()) as sess, \
 | 
						|
          ops.device('/cpu:0'):
 | 
						|
        r = np.random.RandomState(0)
 | 
						|
        input_subscripts = equation.split('->')[0].split(',')
 | 
						|
        input_vars = []
 | 
						|
        for subscript in input_subscripts:
 | 
						|
          input_shape = (dim,) * len(subscript)
 | 
						|
          input_vars.append(
 | 
						|
              variables.Variable(np.array(r.randn(*input_shape), np.float32)))
 | 
						|
        self.evaluate(variables.global_variables_initializer())
 | 
						|
 | 
						|
        # Call einsum_v1.
 | 
						|
        self.run_op_benchmark(
 | 
						|
            sess,
 | 
						|
            special_math_ops.einsum(equation, *input_vars),
 | 
						|
            min_iters=50,
 | 
						|
            name='einsum_v1_cpu_({})_{}'.format(equation, dim))
 | 
						|
 | 
						|
        # Call gen_linalg_ops.einsum.
 | 
						|
        self.run_op_benchmark(
 | 
						|
            sess,
 | 
						|
            gen_linalg_ops.einsum(input_vars, equation),
 | 
						|
            min_iters=50,
 | 
						|
            name='einsum_v2_cpu_({})_{}'.format(equation, dim))
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
  test.main()
 |