STT-tensorflow/tensorflow/python/kernel_tests/conv3d_transpose_test.py
Akshay Modi f86747fe82 Fix Conv3DBackpropFilterOp with int64 input_sizes on GPU.
Re-enable the test that was failing before.

PiperOrigin-RevId: 236230029
2019-02-28 17:43:55 -08:00

229 lines
9.1 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for convolution related functionality in tensorflow.ops.nn."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import test_util
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import nn_ops
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
from tensorflow.python.platform import test
class Conv3DTransposeTest(test.TestCase):
def testConv3DTransposeSingleStride(self):
with self.cached_session():
strides = [1, 1, 1, 1, 1]
# Input, output: [batch, depth, height, width, channel]
x_shape = [2, 5, 6, 4, 3]
y_shape = [2, 5, 6, 4, 2]
# Filter: [kernel_depth, kernel_height, kernel_width, out_depth, in_depth]
f_shape = [3, 3, 3, 2, 3]
x = constant_op.constant(
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
f = constant_op.constant(
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
output = nn_ops.conv3d_transpose(
x, f, y_shape, strides=strides, padding="SAME")
value = self.evaluate(output)
# We count the number of cells being added at the locations in the output.
# At the center, #cells = kernel_depth * kernel_height * kernel_width
# At the corners, #cells = ceil(kernel_depth/2) * ceil(kernel_height/2)
# * ceil(kernel_width/2)
# At the edges, #cells =
# kernel_depth * ceil(kernel_height/2) * ceil(kernel_width/2) or
# ceil(kernel_depth/2) * kernel_height * ceil(kernel_width/2) or
# ceil(kernel_depth/2) * ceil(kernel_height/2) * kernel_width
# At the borders, #cells =
# ceil(kernel_depth/2) * kernel_height * kernel_width or
# kernel_depth * ceil(kernel_height/2) * kernel_width or
# kernel_depth * kernel_height * ceil(kernel_width/2)
for n in xrange(x_shape[0]):
for k in xrange(f_shape[3]):
for w in xrange(y_shape[3]):
for h in xrange(y_shape[2]):
for d in xrange(y_shape[1]):
d_in = d > 0 and d < y_shape[1] - 1
h_in = h > 0 and h < y_shape[2] - 1
w_in = w > 0 and w < y_shape[3] - 1
if d_in + h_in + w_in == 3:
target = 27 * 3.0
elif d_in + h_in + w_in == 2:
target = 18 * 3.0
elif d_in or h_in or w_in:
target = 12 * 3.0
else:
target = 8 * 3.0
self.assertAllClose(target, value[n, d, h, w, k])
def testConv3DTransposeSame(self):
with self.cached_session():
strides = [1, 2, 2, 2, 1]
# Input, output: [batch, depth, height, width, depth]
x_shape = [2, 5, 6, 4, 3]
y_shape = [2, 10, 12, 8, 2]
# Filter: [kernel_depth, kernel_height, kernel_width, out_depth, in_depth]
f_shape = [3, 3, 3, 2, 3]
x = constant_op.constant(
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
f = constant_op.constant(
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
output = nn_ops.conv3d_transpose(
x, f, y_shape, strides=strides, padding="SAME")
value = self.evaluate(output)
for n in xrange(x_shape[0]):
for k in xrange(f_shape[3]):
for w in xrange(y_shape[3]):
for h in xrange(y_shape[2]):
for d in xrange(y_shape[1]):
# We add a case for locations divisible by the stride.
d_in = d % strides[1] == 0 and 0 < d < y_shape[1] - 1
h_in = h % strides[2] == 0 and 0 < h < y_shape[2] - 1
w_in = w % strides[3] == 0 and 0 < w < y_shape[3] - 1
if d_in + h_in + w_in == 3:
target = 8 * 3.0
elif d_in + h_in + w_in == 2:
target = 4 * 3.0
elif d_in or h_in or w_in:
target = 2 * 3.0
else:
target = 3.0
self.assertAllClose(target, value[n, d, h, w, k])
@test_util.run_deprecated_v1
def testConv3DTransposeShapeMismatch(self):
# Test case for GitHub issue 18460
x_shape = [2, 2, 3, 4, 3]
f_shape = [3, 3, 3, 2, 2]
y_shape = [2, 2, 6, 8, 6]
strides = [1, 1, 2, 2, 2]
np.random.seed(1)
x_value = np.random.random_sample(x_shape).astype(np.float64)
f_value = np.random.random_sample(f_shape).astype(np.float64)
nn_ops.conv3d_transpose(
x_value, f_value, y_shape, strides, data_format='NCDHW')
def testConv3DTransposeOutputShapeType(self):
# Test case for GitHub issue 18887
for dtype in [dtypes.int32, dtypes.int64]:
with self.cached_session():
x_shape = [2, 5, 6, 4, 3]
y_shape = [2, 5, 6, 4, 2]
f_shape = [3, 3, 3, 2, 3]
strides = [1, 1, 1, 1, 1]
x_value = constant_op.constant(
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
f_value = constant_op.constant(
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
output = nn_ops.conv3d_transpose(
x_value, f_value, constant_op.constant(y_shape, dtype=dtype),
strides=strides, padding="SAME")
self.evaluate(output)
def testConv3DTransposeValid(self):
with self.cached_session():
strides = [1, 2, 2, 2, 1]
# Input, output: [batch, depth, height, width, depth]
x_shape = [2, 5, 6, 4, 3]
y_shape = [2, 11, 13, 9, 2]
# Filter: [kernel_depth, kernel_height, kernel_width, out_depth, in_depth]
f_shape = [3, 3, 3, 2, 3]
x = constant_op.constant(
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
f = constant_op.constant(
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
output = nn_ops.conv3d_transpose(
x, f, y_shape, strides=strides, padding="VALID")
value = self.evaluate(output)
cache_values = np.zeros(y_shape, dtype=np.float32)
# The amount of padding added
pad = 1
for n in xrange(x_shape[0]):
for k in xrange(f_shape[3]):
for w in xrange(y_shape[3]):
for h in xrange(y_shape[2]):
for d in xrange(y_shape[1]):
# We add a case for locations divisible by the stride.
d_in = d % strides[1] == 0 and pad < d < y_shape[1] - 1 - pad
h_in = h % strides[2] == 0 and pad < h < y_shape[2] - 1 - pad
w_in = w % strides[3] == 0 and pad < w < y_shape[3] - 1 - pad
if d_in + h_in + w_in == 3:
target = 8 * 3.0
elif d_in + h_in + w_in == 2:
target = 4 * 3.0
elif d_in or h_in or w_in:
target = 2 * 3.0
else:
target = 3.0
cache_values[n, d, h, w, k] = target
# copy values in the border
cache_values[n, :, :, 0, k] = cache_values[n, :, :, 1, k]
cache_values[n, :, :, -1, k] = cache_values[n, :, :, -2, k]
cache_values[n, :, 0, :, k] = cache_values[n, :, 1, :, k]
cache_values[n, :, -1, :, k] = cache_values[n, :, -2, :, k]
cache_values[n, 0, :, :, k] = cache_values[n, 1, :, :, k]
cache_values[n, -1, :, :, k] = cache_values[n, -2, :, :, k]
self.assertAllClose(cache_values, value)
@test_util.run_deprecated_v1
def testGradient(self):
x_shape = [2, 3, 4, 3, 2]
f_shape = [3, 3, 3, 2, 2]
y_shape = [2, 6, 8, 6, 2]
strides = [1, 2, 2, 2, 1]
np.random.seed(1) # Make it reproducible.
x_val = np.random.random_sample(x_shape).astype(np.float64)
f_val = np.random.random_sample(f_shape).astype(np.float64)
with self.cached_session():
x = constant_op.constant(x_val, name="x", dtype=dtypes.float32)
f = constant_op.constant(f_val, name="f", dtype=dtypes.float32)
output = nn_ops.conv3d_transpose(
x, f, y_shape, strides=strides, padding="SAME")
err = gradient_checker.compute_gradient_error([x, f], [x_shape, f_shape],
output, y_shape)
print("conv3d_transpose gradient err = %g " % err)
err_tolerance = 0.0005
self.assertLess(err, err_tolerance)
if __name__ == "__main__":
test.main()