STT-tensorflow/tensorflow/python/kernel_tests/concat_op_test.py
Gaurav Jain 55b546de0e Improve GPU dtype coverage of concat
PiperOrigin-RevId: 333461512
Change-Id: Ic0dd1e6f30ef321c4da63bd5da4b92a525a5f237
2020-09-24 00:52:50 -07:00

774 lines
29 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for Concat Op."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
class ConcatOpTest(test.TestCase):
@test_util.run_deprecated_v1
def testHStack(self):
with self.session(use_gpu=True):
p1 = array_ops.placeholder(dtypes.float32, shape=[4, 4])
p2 = array_ops.placeholder(dtypes.float32, shape=[4, 4])
c = array_ops.concat([p1, p2], 0)
params = {
p1: np.random.rand(4, 4).astype("f"),
p2: np.random.rand(4, 4).astype("f")
}
result = c.eval(feed_dict=params)
self.assertEqual(result.shape, c.get_shape())
self.assertAllEqual(result[:4, :], params[p1])
self.assertAllEqual(result[4:, :], params[p2])
@test_util.run_deprecated_v1
def testVStack(self):
with self.session(use_gpu=True):
p1 = array_ops.placeholder(dtypes.float32, shape=[4, 4])
p2 = array_ops.placeholder(dtypes.float32, shape=[4, 4])
c = array_ops.concat([p1, p2], 1)
params = {
p1: np.random.rand(4, 4).astype("f"),
p2: np.random.rand(4, 4).astype("f")
}
result = c.eval(feed_dict=params)
self.assertEqual(result.shape, c.get_shape())
self.assertAllEqual(result[:, :4], params[p1])
self.assertAllEqual(result[:, 4:], params[p2])
@test_util.run_deprecated_v1
def test4DStack(self):
with self.session(use_gpu=True):
p1 = array_ops.placeholder(dtypes.float32, shape=[2, 3, 1, 1])
p2 = array_ops.placeholder(dtypes.float32, shape=[2, 3, 4, 1])
c = array_ops.concat([p1, p2], 2)
params = {
p1: np.random.rand(2, 3, 1, 1).astype("f"),
p2: np.random.rand(2, 3, 4, 1).astype("f")
}
result = c.eval(feed_dict=params)
self.assertEqual(result.shape, c.get_shape())
self.assertAllEqual(result[:, :, :1, :], params[p1])
self.assertAllEqual(result[:, :, 1:, :], params[p2])
def testInt32GPU(self):
with test_util.use_gpu():
p1 = np.random.rand(2, 3).astype("i")
p2 = np.random.rand(2, 3).astype("i")
x1 = constant_op.constant(p1)
x2 = constant_op.constant(p2)
c = array_ops.concat([x1, x2], 0)
result = self.evaluate(c)
self.assertAllEqual(result[:2, :], p1)
self.assertAllEqual(result[2:, :], p2)
def testRefType(self):
with test_util.use_gpu():
p1 = np.random.rand(4, 4).astype("f")
p2 = np.random.rand(4, 4).astype("f")
v1 = variables.Variable(p1)
v2 = variables.Variable(p2)
c = array_ops.concat([v1, v2], 0)
self.evaluate(variables.global_variables_initializer())
result = self.evaluate(c)
self.assertEqual(result.shape, c.get_shape())
self.assertAllEqual(result[:4, :], p1)
self.assertAllEqual(result[4:, :], p2)
def _testRandom(self, dtype):
# Random dims of rank 5
shape = np.random.randint(1, 5, size=5)
# Random number of tensors, but always > 1.
num_tensors = np.random.randint(2, 10)
# Random dim to concat on
concat_dim = np.random.randint(5)
params = {}
if dtype == dtypes.bfloat16:
dtype_feed = dtypes.float32
else:
dtype_feed = dtype
with self.session(use_gpu=True):
p = []
for i in np.arange(num_tensors):
input_shape = shape
input_shape[concat_dim] = np.random.randint(1, 5)
placeholder = array_ops.placeholder(dtype_feed, shape=input_shape)
p.append(placeholder)
t = dtype_feed.as_numpy_dtype
params[placeholder] = np.random.rand(*input_shape).astype(t)
if dtype != dtype_feed:
concat_inputs = [math_ops.cast(p_i, dtype) for p_i in p]
else:
concat_inputs = p
c = array_ops.concat(concat_inputs, concat_dim)
if dtype != dtype_feed:
c = math_ops.cast(c, dtype_feed)
result = c.eval(feed_dict=params)
self.assertEqual(result.shape, c.get_shape())
cur_offset = 0
for i in np.arange(num_tensors):
# The index into the result is the ':' along all dimensions
# except the concat_dim. slice(0, size) is used for ':', and
# a list of slices is used to index into result.
ind = [slice(0, params[p[i]].shape[j]) for j in np.arange(5)]
ind[concat_dim] = slice(cur_offset,
cur_offset + params[p[i]].shape[concat_dim])
cur_offset += params[p[i]].shape[concat_dim]
if dtype == dtype_feed:
self.assertAllEqual(result[ind], params[p[i]])
else:
self.assertAllClose(result[ind], params[p[i]], 0.01)
@test_util.run_deprecated_v1
def testRandom(self):
self._testRandom(dtypes.bool)
self._testRandom(dtypes.float32)
self._testRandom(dtypes.int16)
self._testRandom(dtypes.int32)
self._testRandom(dtypes.int64)
self._testRandom(dtypes.bfloat16)
self._testRandom(dtypes.complex64)
self._testRandom(dtypes.complex128)
@test_util.run_deprecated_v1
def testInvalidConcatDimTypeAndShape(self):
a = variables.Variable(constant_op.constant(1.0, shape=[1]))
b = variables.Variable(constant_op.constant(2.0, shape=[1]))
with self.assertRaises(ValueError):
array_ops.concat(b, a)
with self.assertRaises(TypeError):
array_ops.concat(1, 4.2)
with self.assertRaises(ValueError):
array_ops.concat(1, a)
with self.assertRaises(TypeError):
array_ops.concat([a, b], a)
with self.assertRaises(ValueError):
array_ops.concat([a, b], [3])
with self.assertRaises(ValueError):
array_ops.concat([], 0)
# An integer tensor for shape dim should throw no error.
array_ops.concat(1, constant_op.constant(0, shape=[]))
# A non-scalar tensor for shape should throw ValueError.
with self.assertRaises(ValueError):
array_ops.concat(1, constant_op.constant(0, shape=[1]))
def _testGradientsSimple(self, dtype):
# Test both positive and negative concat axis.
# -2 and 1 correspond to the same axis for 3-dimensional tensors.
for axis in [-2, 1]:
with test_util.use_gpu():
inp = []
inp_tensors = []
for x in [1, 2, 6]:
shape = [10, x, 2]
t = np.random.rand(*shape).astype(dtype.as_numpy_dtype)
if dtype.is_complex:
t += -1j * t
inp.append(t)
inp_tensors.append(
constant_op.constant(
t.flatten(),
shape=shape,
dtype=dtype))
c = array_ops.concat(inp_tensors, axis)
output_shape = [10, 9, 2]
grad_inp = np.random.rand(*output_shape).astype(dtype.as_numpy_dtype)
if dtype.is_complex:
grad_inp += -1j * grad_inp
grad_tensor = constant_op.constant(
grad_inp.flatten(), shape=output_shape)
grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
concated_grad = array_ops.concat(grad, axis)
result = self.evaluate(concated_grad)
self.assertAllEqual(result, grad_inp)
@test_util.run_deprecated_v1
def testGradientsSimple(self):
self._testGradientsSimple(dtypes.float32)
self._testGradientsSimple(dtypes.complex64)
@test_util.run_deprecated_v1
def testGradientsFirstDim(self):
with test_util.use_gpu():
inp = []
inp_tensors = []
for x in [1, 2, 6]:
shape = [x, 10, 2]
t = np.random.rand(*shape).astype("f")
inp.append(t)
inp_tensors.append(
constant_op.constant(
t.flatten(),
shape=shape,
dtype=dtypes.float32))
c = array_ops.concat(inp_tensors, 0)
output_shape = [9, 10, 2]
grad_inp = np.random.rand(*output_shape).astype("f")
grad_tensor = constant_op.constant(
grad_inp.flatten(), shape=output_shape)
grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
concated_grad = array_ops.concat(grad, 0)
result = self.evaluate(concated_grad)
self.assertAllEqual(result, grad_inp)
@test_util.run_deprecated_v1
def testGradientsLastDim(self):
# Test both positive and negative concat axis.
# -1 and 2 correspond to the same axis for 3-dimensional tensors.
for axis in [-1, 2]:
with test_util.use_gpu():
inp = []
inp_tensors = []
for x in [1, 2, 6]:
shape = [10, 2, x]
t = np.random.rand(*shape).astype("f")
inp.append(t)
inp_tensors.append(
constant_op.constant(
t.flatten(),
shape=shape,
dtype=dtypes.float32))
c = array_ops.concat(inp_tensors, 2)
output_shape = [10, 2, 9]
grad_inp = np.random.rand(*output_shape).astype("f")
grad_tensor = constant_op.constant(
grad_inp.flatten(), shape=output_shape)
grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
concated_grad = array_ops.concat(grad, axis)
result = self.evaluate(concated_grad)
self.assertAllEqual(result, grad_inp)
def _RunAndVerifyGradientsRandom(self):
# Random dims of rank 5
input_shape = np.random.randint(1, 5, size=5)
# Random number of tensors
num_tensors = np.random.randint(12, 20)
# Random dim to concat on
concat_dim = np.random.randint(5)
concat_dim_sizes = np.random.randint(1, 5, size=num_tensors)
with test_util.use_gpu():
inp = []
inp_tensors = []
for x in concat_dim_sizes:
shape = input_shape
shape[concat_dim] = x
t = np.random.rand(*shape).astype("f")
inp.append(t)
inp_tensors.append(
constant_op.constant(t.flatten(), shape=shape,
dtype=dtypes.float32))
c = array_ops.concat(inp_tensors, concat_dim)
output_shape = input_shape
output_shape[concat_dim] = concat_dim_sizes.sum()
grad_inp = np.random.rand(*output_shape).astype("f")
grad_tensor = constant_op.constant(grad_inp.flatten(), shape=output_shape)
grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
concated_grad = array_ops.concat(grad, concat_dim)
result = self.evaluate(concated_grad)
self.assertAllEqual(result, grad_inp)
@test_util.run_deprecated_v1
def testGradientsRandom(self):
for _ in range(5):
self._RunAndVerifyGradientsRandom()
@test_util.run_deprecated_v1
def testGradientWithUnknownInputDim(self):
with self.session(use_gpu=True):
x = array_ops.placeholder(dtypes.float32)
y = array_ops.placeholder(dtypes.float32)
c = array_ops.concat([x, y], 2)
output_shape = [10, 2, 9]
grad_inp = np.random.rand(*output_shape).astype("f")
grad_tensor = constant_op.constant(
grad_inp.flatten(), shape=output_shape)
grad = gradients_impl.gradients([c], [x, y], [grad_tensor])
concated_grad = array_ops.concat(grad, 2)
params = {
x: np.random.rand(10, 2, 3).astype("f"),
y: np.random.rand(10, 2, 6).astype("f")
}
result = concated_grad.eval(feed_dict=params)
self.assertAllEqual(result, grad_inp)
@test_util.run_deprecated_v1
def testShapeError(self):
# Rank doesn't match.
with self.assertRaises(ValueError):
array_ops.concat(
[constant_op.constant(10.0, shape=[4, 4, 4, 4]),
constant_op.constant(20.0, shape=[4, 4, 4])
], 1)
# Dimensions don't match in a non-concat dim.
with self.assertRaises(ValueError):
array_ops.concat(
[constant_op.constant(10.0, shape=[1, 2, 1]),
constant_op.constant(20.0, shape=[3, 2, 1])
], 1)
# concat_dim out of range.
with self.assertRaises(ValueError):
array_ops.concat(
[constant_op.constant(10.0, shape=[4, 4, 4]),
constant_op.constant(20.0, shape=[4, 4, 4])
], 3)
# concat_dim out of range
with self.assertRaises(ValueError):
array_ops.concat(
[constant_op.constant(10.0, shape=[4, 4, 4]),
constant_op.constant(20.0, shape=[4, 4, 4])
], -4)
@test_util.run_deprecated_v1
def testShapeWithUnknownConcatDim(self):
p1 = array_ops.placeholder(dtypes.float32)
c1 = constant_op.constant(10.0, shape=[4, 4, 4, 4])
p2 = array_ops.placeholder(dtypes.float32)
c2 = constant_op.constant(20.0, shape=[4, 4, 4, 4])
dim = array_ops.placeholder(dtypes.int32)
concat = array_ops.concat([p1, c1, p2, c2], dim)
self.assertEqual(4, concat.get_shape().ndims)
# All dimensions unknown.
concat2 = array_ops.concat([p1, p2], dim)
self.assertEqual(None, concat2.get_shape())
# Rank doesn't match.
c3 = constant_op.constant(30.0, shape=[4, 4, 4])
with self.assertRaises(ValueError):
array_ops.concat([p1, c1, p2, c3], dim)
@test_util.run_deprecated_v1
def testZeroSize(self):
# Verify that concat doesn't crash and burn for zero size inputs
np.random.seed(7)
with test_util.use_gpu():
for shape0 in (), (2,):
axis = len(shape0)
for shape1 in (), (3,):
for n0 in 0, 1, 2:
for n1 in 0, 1, 2:
x0 = np.random.randn(*(shape0 + (n0,) + shape1))
x1 = np.random.randn(*(shape0 + (n1,) + shape1))
correct = np.concatenate([x0, x1], axis=axis)
# TODO(irving): Make tf.concat handle map, then drop list().
xs = list(map(constant_op.constant, [x0, x1]))
c = array_ops.concat(xs, axis)
self.assertAllEqual(self.evaluate(c), correct)
# Check gradients
dc = np.random.randn(*c.get_shape().as_list())
dxs = self.evaluate(gradients_impl.gradients(c, xs, dc))
self.assertAllEqual(dc, np.concatenate(dxs, axis=axis))
@test_util.run_deprecated_v1
def testTensorConcatDim0Grad(self):
x_shapes = [[20, 7, 3], [10, 7, 3], [14, 7, 3]]
output_shape = [44, 7, 3]
x_vals = [
np.random.random_sample(x_shape).astype(np.float64)
for x_shape in x_shapes
]
with self.cached_session():
xs = [constant_op.constant(x_val) for x_val in x_vals]
output = array_ops.concat(xs, 0)
err = gradient_checker.compute_gradient_error(xs, x_shapes, output,
output_shape)
self.assertLess(err, 1e-11)
@test_util.run_deprecated_v1
def testTensorConcatDim1Grad(self):
x_shapes = [[20, 7, 3], [20, 3, 3], [20, 1, 3]]
output_shape = [20, 11, 3]
x_vals = [
np.random.random_sample(x_shape).astype(np.float64)
for x_shape in x_shapes
]
with self.cached_session():
xs = [constant_op.constant(x_val) for x_val in x_vals]
output = array_ops.concat(xs, 1)
err = gradient_checker.compute_gradient_error(xs, x_shapes, output,
output_shape)
self.assertLess(err, 1e-11)
@test_util.run_deprecated_v1
def testIndexedSlicesConcatDim0Grad(self):
x_shapes = [[20, 7, 3], [10, 7, 3], [14, 7, 3]]
output_shape = [4, 7, 3]
x_vals = [
np.random.random_sample(x_shape).astype(np.float64)
for x_shape in x_shapes
]
with self.cached_session():
xs = [constant_op.constant(x_val) for x_val in x_vals]
x_concat = array_ops.concat(xs, 0)
output = array_ops.gather(x_concat, [1, 2, 0, 5])
err = gradient_checker.compute_gradient_error(xs, x_shapes, output,
output_shape)
self.assertLess(err, 1e-11)
@test_util.run_deprecated_v1
def testIndexedSlicesConcatDim1Grad(self):
x_shapes = [[20, 7, 3], [20, 3, 3], [20, 1, 3]]
output_shape = [4, 11, 3]
x_vals = [
np.random.random_sample(x_shape).astype(np.float64)
for x_shape in x_shapes
]
with self.cached_session():
xs = [constant_op.constant(x_val) for x_val in x_vals]
x_concat = array_ops.concat(xs, 1)
output = array_ops.gather(x_concat, [1, 2, 0, 5])
err = gradient_checker.compute_gradient_error(xs, x_shapes, output,
output_shape)
self.assertLess(err, 1e-11)
@test_util.run_deprecated_v1
def testIndexedSlicesConcatDim2Grad(self):
x_shapes = [[20, 7, 3], [20, 7, 1], [20, 7, 2]]
output_shape = [4, 7, 6]
x_vals = [
np.random.random_sample(x_shape).astype(np.float64)
for x_shape in x_shapes
]
with self.cached_session():
xs = [constant_op.constant(x_val) for x_val in x_vals]
x_concat = array_ops.concat(xs, 2)
output = array_ops.gather(x_concat, [1, 2, 0, 5])
err = gradient_checker.compute_gradient_error(xs, x_shapes, output,
output_shape)
self.assertLess(err, 1e-11)
@test_util.run_deprecated_v1
def testIndexedSlicesConcatDim1Grad_UnknownInputDim(self):
x_shapes = [[20, 7, 3], [20, 3, 3], [20, 1, 3]]
output_shape = [4, 11, 3]
with self.cached_session():
x_1 = array_ops.placeholder(dtypes.float64)
x_2 = array_ops.placeholder(dtypes.float64)
x_3 = array_ops.placeholder(dtypes.float64)
xs = [x_1, x_2, x_3]
x_concat = array_ops.concat(xs, 1)
output = array_ops.gather(x_concat, [1, 2, 0, 5])
params = {
x_1: np.random.random_sample(x_shapes[0]).astype(np.float64),
x_2: np.random.random_sample(x_shapes[1]).astype(np.float64),
x_3: np.random.random_sample(x_shapes[2]).astype(np.float64)
}
err = gradient_checker.compute_gradient_error(xs, x_shapes, output,
output_shape,
extra_feed_dict=params)
self.assertLess(err, 1e-11)
def testConcatTuple(self):
c1 = np.random.rand(4, 4)
c2 = np.random.rand(4, 4)
concat_list_t = array_ops.concat([c1, c2], 0)
concat_tuple_t = array_ops.concat((c1, c2), 0)
self.assertAllEqual(
self.evaluate(concat_list_t), self.evaluate(concat_tuple_t))
@test_util.run_deprecated_v1
def testConcatNoScalars(self):
scalar = constant_op.constant(7)
dim = array_ops.placeholder(dtypes.int32)
with self.assertRaisesRegex(
ValueError, r"Can't concatenate scalars \(use tf\.stack instead\)"):
array_ops.concat([scalar, scalar, scalar], dim)
# important as gpu implementation could fail if
# shared memory is not large for all the inputs
@test_util.run_deprecated_v1
def testConcatLargeNumberOfTensors(self):
with self.session(use_gpu=True):
for concat_dim in range(2):
params = {}
p = []
shape = np.array([7, 13])
if test.is_gpu_available():
num_tensors = 5000
else:
num_tensors = 500
for i in np.arange(num_tensors):
input_shape = shape
placeholder = array_ops.placeholder(dtypes.float32, shape=input_shape)
p.append(placeholder)
params[placeholder] = np.random.rand(*input_shape).astype(np.float32)
concat_inputs = p
c = array_ops.concat(concat_inputs, concat_dim)
result = c.eval(feed_dict=params)
self.assertEqual(result.shape, c.get_shape())
cur_offset = 0
for i in np.arange(num_tensors):
# The index into the result is the ':' along all dimensions
# except the concat_dim. slice(0, size) is used for ':', and
# a list of slices is used to index into result.
index = [slice(0, params[p[i]].shape[j]) for j in np.arange(2)]
index[concat_dim] = slice(cur_offset,
cur_offset + params[p[i]].shape[concat_dim])
cur_offset += params[p[i]].shape[concat_dim]
self.assertAllEqual(result[index], params[p[i]])
def testConcatEmpty(self):
with test_util.use_gpu():
t1 = []
t2 = []
output = gen_array_ops.concat_v2([t1, t2], 0)
self.assertFalse(self.evaluate(output)) # Checks that output is empty
@test_util.run_deprecated_v1
def testConcatInvalidAxis(self):
with self.assertRaises(ValueError):
with test_util.use_gpu():
t1 = [1]
t2 = [2]
gen_array_ops.concat_v2([t1, t2], 1).eval()
def testConcatNegativeAxis(self):
with test_util.use_gpu():
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
c = gen_array_ops.concat_v2([t1, t2], -2)
self.assertEqual([4, 3], c.get_shape().as_list())
output = self.evaluate(c)
self.assertAllEqual([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],
output)
c = gen_array_ops.concat_v2([t1, t2], -1)
self.assertEqual([2, 6], c.get_shape().as_list())
output = self.evaluate(c)
self.assertAllEqual([[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]], output)
def _testGradientsForAxis(
self, inp_tensors, axis, output_shape, feed_dict=None):
with self.cached_session():
c = array_ops.concat(inp_tensors, axis)
grad_inp = np.random.rand(*output_shape).astype("f")
grad_tensor = constant_op.constant(
grad_inp.flatten(), shape=output_shape)
grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
concated_grad = array_ops.concat(grad, axis)
result = concated_grad.eval(feed_dict=feed_dict)
self.assertAllEqual(result, grad_inp)
def _testIndexedSlicesGradientsForAxis(
self, inp_tensors, axis, output_shape, gather_indexes, feed_dict=None):
with self.cached_session():
c = array_ops.gather(
array_ops.concat(inp_tensors, axis), gather_indexes)
grad_inp = np.random.rand(*output_shape).astype("f")
grad_tensor = constant_op.constant(
grad_inp.flatten(), shape=output_shape)
grad = gradients_impl.gradients([c], inp_tensors, [grad_tensor])
concated_grad = array_ops.gather(
array_ops.concat(grad, axis), gather_indexes)
result = concated_grad.eval(feed_dict=feed_dict)
self.assertAllEqual(result, grad_inp)
@test_util.run_deprecated_v1
def testGradientsNegativeAxis(self):
x1 = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
x2 = [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]
inp_tensors = [constant_op.constant(x1, shape=(2, 3), dtype=dtypes.float32),
constant_op.constant(x2, shape=(2, 3), dtype=dtypes.float32)]
# Test concat gradient with axis == -2
self._testGradientsForAxis(inp_tensors, -2, output_shape=[4, 3])
# Test concat gradient with unknown-shape tensors.
x1_placeholder = array_ops.placeholder(dtypes.float32)
x2_placeholder = array_ops.placeholder(dtypes.float32)
inp_tensors_placeholders = [x1_placeholder, x2_placeholder]
feed_dict = {x1_placeholder: x1, x2_placeholder: x2}
self._testGradientsForAxis(
inp_tensors_placeholders, -1, output_shape=[2, 6], feed_dict=feed_dict)
# Test IndexedSlices concat gradient.
self._testIndexedSlicesGradientsForAxis(
inp_tensors, -2, output_shape=[2, 3], gather_indexes=[2, 0])
# We don't support calculating IndexedSlices concat gradient for
# negative indexes when rank is not known.
with self.assertRaises(ValueError):
self._testIndexedSlicesGradientsForAxis(
inp_tensors_placeholders, -2, output_shape=[2, 3],
gather_indexes=[2, 0], feed_dict=feed_dict)
def testConcatDtype(self):
for dtype in [dtypes.int32, dtypes.int64, dtypes.uint32, dtypes.uint64]:
with test_util.use_gpu():
t1 = constant_op.constant([[1, 2, 3], [4, 5, 6]], dtype=dtype)
t2 = constant_op.constant([[7, 8, 9], [10, 11, 12]], dtype=dtype)
c = gen_array_ops.concat_v2([t1, t2], 1)
self.assertEqual([2, 6], c.get_shape().as_list())
output = self.evaluate(c)
self.assertAllEqual([[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]], output)
def testConcatAxisType(self):
for dtype in [dtypes.int32, dtypes.int64]:
with test_util.use_gpu():
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
c = gen_array_ops.concat_v2([t1, t2],
constant_op.constant(1, dtype=dtype))
self.assertEqual([2, 6], c.get_shape().as_list())
output = self.evaluate(c)
self.assertAllEqual([[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]], output)
class ConcatOffsetTest(test.TestCase):
def testBasic(self):
with test_util.use_gpu():
cdim = constant_op.constant(1, dtypes.int32)
s0 = constant_op.constant([2, 3, 5], dtypes.int32)
s1 = constant_op.constant([2, 7, 5], dtypes.int32)
s2 = constant_op.constant([2, 20, 5], dtypes.int32)
off = gen_array_ops.concat_offset(cdim, [s0, s1, s2])
ans = self.evaluate(off)
self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]])
@test_util.run_deprecated_v1
def testNotVector(self):
cdim = constant_op.constant(1, dtypes.int32)
s0 = constant_op.constant([[2, 3, 5]], dtypes.int32)
s1 = constant_op.constant([[2, 7, 5]], dtypes.int32)
off = gen_array_ops.concat_offset(cdim, [s0, s1])
with self.assertRaisesRegex(errors_impl.InvalidArgumentError,
r"should be a vector"):
self.evaluate(off)
@test_util.run_deprecated_v1
def testConcatDimOutOfRange(self):
cdim = constant_op.constant(4, dtypes.int32)
s0 = constant_op.constant([2, 3, 5], dtypes.int32)
s1 = constant_op.constant([2, 7, 5], dtypes.int32)
off = gen_array_ops.concat_offset(cdim, [s0, s1])
with self.assertRaisesRegex(errors_impl.InvalidArgumentError,
r"Concat dim is out of range: 4 vs. 3"):
self.evaluate(off)
@test_util.run_deprecated_v1
def testDimMismatch(self):
cdim = constant_op.constant(1, dtypes.int32)
s0 = constant_op.constant([2, 3, 5], dtypes.int32)
s1 = constant_op.constant([2, 7, 5, 10], dtypes.int32)
off = gen_array_ops.concat_offset(cdim, [s0, s1])
with self.assertRaisesRegex(errors_impl.InvalidArgumentError,
r"should contain 3 elem"):
self.evaluate(off)
@test_util.run_deprecated_v1
def testSizeMismatch(self):
cdim = constant_op.constant(1, dtypes.int32)
s0 = constant_op.constant([2, 3, 5], dtypes.int32)
s1 = constant_op.constant([2, 7, 10], dtypes.int32)
off = gen_array_ops.concat_offset(cdim, [s0, s1])
with self.assertRaisesRegex(
errors_impl.InvalidArgumentError,
r"All dimensions except 1 must match. Input 1 has shape \[2 7 10\] "
r"and doesn't match input 0 with shape \[2 3 5\]."):
self.evaluate(off)
def testNegativeDim(self):
with test_util.use_gpu():
cdim = constant_op.constant(-2, dtypes.int32)
s0 = constant_op.constant([2, 3, 5], dtypes.int32)
s1 = constant_op.constant([2, 7, 5], dtypes.int32)
s2 = constant_op.constant([2, 20, 5], dtypes.int32)
off = gen_array_ops.concat_offset(cdim, [s0, s1, s2])
ans = self.evaluate(off)
self.assertAllEqual(ans, [[0, 0, 0], [0, 3, 0], [0, 10, 0]])
cdim = constant_op.constant(-3, dtypes.int32)
s0 = constant_op.constant([2, 3, 5], dtypes.int32)
s1 = constant_op.constant([1, 3, 5], dtypes.int32)
s2 = constant_op.constant([3, 3, 5], dtypes.int32)
off = gen_array_ops.concat_offset(cdim, [s0, s1, s2])
ans = self.evaluate(off)
self.assertAllEqual(ans, [[0, 0, 0], [2, 0, 0], [3, 0, 0]])
def testCreateMemDecBlockedFormat(self):
"""Try to create the mkl concat operation
when one of the input's memory descriptor is in blocked format
"""
if test_util.IsMklEnabled():
s0 = np.ones((1, 8188, 4092, 1), dtype=np.uint8).astype(np.float32)
s1 = array_ops.strided_slice(
s0, [0, 1, 1, 0], [0, -1, -1, 0], [1, 1, 1, 1],
begin_mask=9,
end_mask=9)
s2 = array_ops.slice(s1, [0, 0, 0, 0], [-1, -1, -1, 1])
s3_1 = array_ops.slice(s2, [0, 4, 4, 0], [-1, 8178, 4082, 1])
s3_2 = array_ops.slice(s2, [0, 4, 4, 0], [-1, 8178, 4082, 1])
filter4_1 = constant_op.constant([[[[1.18, -0.51]]]])
s4_1 = nn_ops.conv2d(
s3_1, filter4_1, strides=[1, 1, 1, 1], padding="VALID")
filter4_2 = constant_op.constant([[[[1.38, -0.11]]]])
s4_2 = nn_ops.conv2d(
s3_2, filter4_2, strides=[1, 1, 1, 1], padding="VALID")
s5_1 = array_ops.slice(s4_1, [0, 6, 6, 0], [-1, 1, 1, -1])
s5_2 = array_ops.slice(s4_2, [0, 6, 6, 0], [-1, 1, 1, -1])
x_concat = array_ops.concat([s5_1, s5_2], 3)
self.evaluate(
x_concat
) # This test is only meant to check the creation is not crashed
if __name__ == "__main__":
test.main()