STT-tensorflow/tensorflow/python/kernel_tests/basic_gpu_test.py
Kibeom Kim 431bb29171 Add missing gradient_checker_v2.max_error() checks in tests.
PiperOrigin-RevId: 324095184
Change-Id: I9e3f1e5fc4f5f22b3b3cf4e8196a9b2e28840ed8
2020-07-30 15:46:06 -07:00

252 lines
9.4 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for basic component wise operations using a GPU device."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import threading
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradient_checker_v2
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variables
from tensorflow.python.ops.gen_array_ops import broadcast_gradient_args
from tensorflow.python.platform import test
class GPUBinaryOpsTest(test.TestCase):
def _compareGPU(self, x, y, np_func, tf_func):
with self.cached_session(use_gpu=True) as sess:
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = tf_func(inx, iny)
tf_gpu = self.evaluate(out)
with self.cached_session(use_gpu=False) as sess:
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = tf_func(inx, iny)
tf_cpu = self.evaluate(out)
self.assertAllClose(tf_cpu, tf_gpu)
def testFloatBasic(self):
x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32)
y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32)
self._compareGPU(x, y, np.add, math_ops.add)
self._compareGPU(x, y, np.subtract, math_ops.subtract)
self._compareGPU(x, y, np.multiply, math_ops.multiply)
self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
self._compareGPU(x, y + 0.1, np.floor_divide, math_ops.floordiv)
self._compareGPU(x, y, np.power, math_ops.pow)
def testFloatWithBCast(self):
x = np.linspace(-5, 20, 15).reshape(3, 5).astype(np.float32)
y = np.linspace(20, -5, 30).reshape(2, 3, 5).astype(np.float32)
self._compareGPU(x, y, np.add, math_ops.add)
self._compareGPU(x, y, np.subtract, math_ops.subtract)
self._compareGPU(x, y, np.multiply, math_ops.multiply)
self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
def testDoubleBasic(self):
x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64)
y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64)
self._compareGPU(x, y, np.add, math_ops.add)
self._compareGPU(x, y, np.subtract, math_ops.subtract)
self._compareGPU(x, y, np.multiply, math_ops.multiply)
self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
def testDoubleWithBCast(self):
x = np.linspace(-5, 20, 15).reshape(3, 5).astype(np.float64)
y = np.linspace(20, -5, 30).reshape(2, 3, 5).astype(np.float64)
self._compareGPU(x, y, np.add, math_ops.add)
self._compareGPU(x, y, np.subtract, math_ops.subtract)
self._compareGPU(x, y, np.multiply, math_ops.multiply)
self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
class MathBuiltinUnaryTest(test.TestCase):
def _compare(self, x, np_func, tf_func, use_gpu):
np_out = np_func(x)
with self.cached_session(use_gpu=use_gpu) as sess:
inx = ops.convert_to_tensor(x)
ofunc = tf_func(inx)
tf_out = self.evaluate(ofunc)
self.assertAllClose(np_out, tf_out)
def _inv(self, x):
return 1.0 / x
def _rsqrt(self, x):
return self._inv(np.sqrt(x))
def _testDtype(self, dtype, use_gpu):
data = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(dtype)
data_gt_1 = data + 2 # for x > 1
self._compare(data, np.abs, math_ops.abs, use_gpu)
self._compare(data, np.arccos, math_ops.acos, use_gpu)
self._compare(data, np.arcsin, math_ops.asin, use_gpu)
self._compare(data, np.arcsinh, math_ops.asinh, use_gpu)
self._compare(data_gt_1, np.arccosh, math_ops.acosh, use_gpu)
self._compare(data, np.arctan, math_ops.atan, use_gpu)
self._compare(data, np.ceil, math_ops.ceil, use_gpu)
self._compare(data, np.cos, math_ops.cos, use_gpu)
self._compare(data, np.cosh, math_ops.cosh, use_gpu)
self._compare(data, np.exp, math_ops.exp, use_gpu)
self._compare(data, np.floor, math_ops.floor, use_gpu)
self._compare(data, np.log, math_ops.log, use_gpu)
self._compare(data, np.log1p, math_ops.log1p, use_gpu)
self._compare(data, np.negative, math_ops.negative, use_gpu)
self._compare(data, self._rsqrt, math_ops.rsqrt, use_gpu)
self._compare(data, np.sin, math_ops.sin, use_gpu)
self._compare(data, np.sinh, math_ops.sinh, use_gpu)
self._compare(data, np.sqrt, math_ops.sqrt, use_gpu)
self._compare(data, np.square, math_ops.square, use_gpu)
self._compare(data, np.tan, math_ops.tan, use_gpu)
self._compare(data, np.tanh, math_ops.tanh, use_gpu)
self._compare(data, np.arctanh, math_ops.atanh, use_gpu)
def testTypes(self):
for dtype in [np.float32]:
self._testDtype(dtype, use_gpu=True)
def testFloorDivide(self):
x = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
[1, 3, 2])
y = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
[1, 3, 2])
np_out = np.floor_divide(x, y + 0.1)
with self.session(use_gpu=True) as sess:
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y + 0.1)
ofunc = inx / iny
out_func2 = math_ops.floor(ofunc)
tf_out = self.evaluate(out_func2)
self.assertAllClose(np_out, tf_out)
class BroadcastSimpleTest(test.TestCase):
def _GetGradientArgs(self, xs, ys):
return self.evaluate(broadcast_gradient_args(xs, ys))
def testBroadcast(self):
r0, r1 = self._GetGradientArgs([2, 3, 5], [1])
self.assertAllEqual(r0, [])
self.assertAllEqual(r1, [0, 1, 2])
_GRAD_TOL = {dtypes.float32: 1e-3}
def _compareGpu(self, x, y, np_func, tf_func):
np_ans = np_func(x, y)
with self.cached_session(use_gpu=True):
inx = ops.convert_to_tensor(x)
iny = ops.convert_to_tensor(y)
out = tf_func(inx, iny)
tf_gpu = self.evaluate(out)
self.assertAllClose(np_ans, tf_gpu)
self.assertShapeEqual(np_ans, out)
# TODO(zhifengc/ke): make gradient checker work on GPU.
def testGradient(self):
x1 = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
[1, 3, 2])
x2 = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
[1, 3, 2])
def div_x1(x1):
return math_ops.truediv(x1, x2) * math_ops.cast(1.1, dtype=x1.dtype)
def div_x2(x2):
return math_ops.truediv(x1, x2) * math_ops.cast(1.1, dtype=x2.dtype)
with self.cached_session():
err = gradient_checker_v2.max_error(*gradient_checker_v2.compute_gradient(
div_x1, [x1]))
self.assertLess(err, self._GRAD_TOL[dtypes.as_dtype(x1.dtype)])
err = gradient_checker_v2.max_error(*gradient_checker_v2.compute_gradient(
div_x2, [x2]))
self.assertLess(err, self._GRAD_TOL[dtypes.as_dtype(x2.dtype)])
self._compareGpu(x1, x2, np.true_divide, math_ops.truediv)
self._compareGpu(x1, x2 + 0.1, np.floor_divide, math_ops.floordiv)
class GpuMultiSessionMemoryTest(test_util.TensorFlowTestCase):
"""Tests concurrent sessions executing on the same GPU."""
def _run_session(self, session, results):
n_iterations = 500
with session as s:
data = variables.Variable(1.0)
with ops.device('/device:GPU:0'):
random_seed.set_random_seed(1)
matrix1 = variables.Variable(
random_ops.truncated_normal([1024, 1]), name='matrix1')
matrix2 = variables.Variable(
random_ops.truncated_normal([1, 1024]), name='matrix2')
x1 = math_ops.multiply(data, matrix1, name='x1')
x3 = math_ops.matmul(x1, math_ops.matmul(matrix2, matrix1))
x4 = math_ops.matmul(array_ops.transpose(x3), x3, name='x4')
s.run(variables.global_variables_initializer())
for _ in xrange(n_iterations):
value = s.run(x4)
results.add(value.flat[0])
if len(results) != 1:
break
@test_util.run_v1_only('b/126596827 needs graph mode in multiple threads')
def testConcurrentSessions(self):
n_threads = 4
threads = []
results = []
for _ in xrange(n_threads):
session = self.session(graph=ops.Graph(), use_gpu=True)
results.append(set())
args = (session, results[-1])
threads.append(threading.Thread(target=self._run_session, args=args))
for thread in threads:
thread.start()
for thread in threads:
thread.join()
flat_results = set(itertools.chain(*results))
self.assertEqual(1,
len(flat_results),
'Expected single value, got %r' % flat_results)
if __name__ == '__main__':
test.main()