STT-tensorflow/tensorflow/python/keras/utils/generic_utils_test.py
Katherine Wu 5186e8295c Improve error message when Keras is unable to find a custom object.
PiperOrigin-RevId: 342918274
Change-Id: I882e96c55d75fa1edf9688215b6738624ad93c63
2020-11-17 12:25:13 -08:00

389 lines
13 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras generic Python utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import numpy as np
from tensorflow.python import keras
from tensorflow.python.platform import test
class HasArgTest(test.TestCase):
def test_has_arg(self):
def f_x(x):
return x
def f_x_args(x, *args):
_ = args
return x
def f_x_kwargs(x, **kwargs):
_ = kwargs
return x
def f(a, b, c):
return a + b + c
partial_f = partial(f, b=1)
self.assertTrue(keras.utils.generic_utils.has_arg(
f_x, 'x', accept_all=False))
self.assertFalse(keras.utils.generic_utils.has_arg(
f_x, 'y', accept_all=False))
self.assertTrue(keras.utils.generic_utils.has_arg(
f_x_args, 'x', accept_all=False))
self.assertFalse(keras.utils.generic_utils.has_arg(
f_x_args, 'y', accept_all=False))
self.assertTrue(keras.utils.generic_utils.has_arg(
f_x_kwargs, 'x', accept_all=False))
self.assertFalse(keras.utils.generic_utils.has_arg(
f_x_kwargs, 'y', accept_all=False))
self.assertTrue(keras.utils.generic_utils.has_arg(
f_x_kwargs, 'y', accept_all=True))
self.assertTrue(
keras.utils.generic_utils.has_arg(partial_f, 'c', accept_all=True))
class TestCustomObjectScope(test.TestCase):
def test_custom_object_scope(self):
def custom_fn():
pass
class CustomClass(object):
pass
with keras.utils.generic_utils.custom_object_scope(
{'CustomClass': CustomClass, 'custom_fn': custom_fn}):
act = keras.activations.get('custom_fn')
self.assertEqual(act, custom_fn)
cl = keras.regularizers.get('CustomClass')
self.assertEqual(cl.__class__, CustomClass)
class SerializeKerasObjectTest(test.TestCase):
def test_serialize_none(self):
serialized = keras.utils.generic_utils.serialize_keras_object(None)
self.assertEqual(serialized, None)
deserialized = keras.utils.generic_utils.deserialize_keras_object(
serialized)
self.assertEqual(deserialized, None)
def test_serialize_custom_class_with_default_name(self):
@keras.utils.generic_utils.register_keras_serializable()
class TestClass(object):
def __init__(self, value):
self._value = value
def get_config(self):
return {'value': self._value}
serialized_name = 'Custom>TestClass'
inst = TestClass(value=10)
class_name = keras.utils.generic_utils._GLOBAL_CUSTOM_NAMES[TestClass]
self.assertEqual(serialized_name, class_name)
config = keras.utils.generic_utils.serialize_keras_object(inst)
self.assertEqual(class_name, config['class_name'])
new_inst = keras.utils.generic_utils.deserialize_keras_object(config)
self.assertIsNot(inst, new_inst)
self.assertIsInstance(new_inst, TestClass)
self.assertEqual(10, new_inst._value)
# Make sure registering a new class with same name will fail.
with self.assertRaisesRegex(ValueError, '.*has already been registered.*'):
@keras.utils.generic_utils.register_keras_serializable() # pylint: disable=function-redefined
class TestClass(object):
def __init__(self, value):
self._value = value
def get_config(self):
return {'value': self._value}
def test_serialize_custom_class_with_custom_name(self):
@keras.utils.generic_utils.register_keras_serializable(
'TestPackage', 'CustomName')
class OtherTestClass(object):
def __init__(self, val):
self._val = val
def get_config(self):
return {'val': self._val}
serialized_name = 'TestPackage>CustomName'
inst = OtherTestClass(val=5)
class_name = keras.utils.generic_utils._GLOBAL_CUSTOM_NAMES[OtherTestClass]
self.assertEqual(serialized_name, class_name)
fn_class_name = keras.utils.generic_utils.get_registered_name(
OtherTestClass)
self.assertEqual(fn_class_name, class_name)
cls = keras.utils.generic_utils.get_registered_object(fn_class_name)
self.assertEqual(OtherTestClass, cls)
config = keras.utils.generic_utils.serialize_keras_object(inst)
self.assertEqual(class_name, config['class_name'])
new_inst = keras.utils.generic_utils.deserialize_keras_object(config)
self.assertIsNot(inst, new_inst)
self.assertIsInstance(new_inst, OtherTestClass)
self.assertEqual(5, new_inst._val)
def test_serialize_custom_function(self):
@keras.utils.generic_utils.register_keras_serializable()
def my_fn():
return 42
serialized_name = 'Custom>my_fn'
class_name = keras.utils.generic_utils._GLOBAL_CUSTOM_NAMES[my_fn]
self.assertEqual(serialized_name, class_name)
fn_class_name = keras.utils.generic_utils.get_registered_name(my_fn)
self.assertEqual(fn_class_name, class_name)
config = keras.utils.generic_utils.serialize_keras_object(my_fn)
self.assertEqual(class_name, config)
fn = keras.utils.generic_utils.deserialize_keras_object(config)
self.assertEqual(42, fn())
fn_2 = keras.utils.generic_utils.get_registered_object(fn_class_name)
self.assertEqual(42, fn_2())
def test_serialize_custom_class_without_get_config_fails(self):
with self.assertRaisesRegex(
ValueError, 'Cannot register a class that does '
'not have a get_config.*'):
@keras.utils.generic_utils.register_keras_serializable( # pylint: disable=unused-variable
'TestPackage', 'TestClass')
class TestClass(object):
def __init__(self, value):
self._value = value
def test_serializable_object(self):
class SerializableInt(int):
"""A serializable object to pass out of a test layer's config."""
def __new__(cls, value):
return int.__new__(cls, value)
def get_config(self):
return {'value': int(self)}
@classmethod
def from_config(cls, config):
return cls(**config)
layer = keras.layers.Dense(
SerializableInt(3),
activation='relu',
kernel_initializer='ones',
bias_regularizer='l2')
config = keras.layers.serialize(layer)
new_layer = keras.layers.deserialize(
config, custom_objects={'SerializableInt': SerializableInt})
self.assertEqual(new_layer.activation, keras.activations.relu)
self.assertEqual(new_layer.bias_regularizer.__class__,
keras.regularizers.L2)
self.assertEqual(new_layer.units.__class__, SerializableInt)
self.assertEqual(new_layer.units, 3)
def test_nested_serializable_object(self):
class SerializableInt(int):
"""A serializable object to pass out of a test layer's config."""
def __new__(cls, value):
return int.__new__(cls, value)
def get_config(self):
return {'value': int(self)}
@classmethod
def from_config(cls, config):
return cls(**config)
class SerializableNestedInt(int):
"""A serializable object containing another serializable object."""
def __new__(cls, value, int_obj):
obj = int.__new__(cls, value)
obj.int_obj = int_obj
return obj
def get_config(self):
return {'value': int(self), 'int_obj': self.int_obj}
@classmethod
def from_config(cls, config):
return cls(**config)
nested_int = SerializableInt(4)
layer = keras.layers.Dense(
SerializableNestedInt(3, nested_int),
name='SerializableNestedInt',
activation='relu',
kernel_initializer='ones',
bias_regularizer='l2')
config = keras.layers.serialize(layer)
new_layer = keras.layers.deserialize(
config,
custom_objects={
'SerializableInt': SerializableInt,
'SerializableNestedInt': SerializableNestedInt
})
# Make sure the string field doesn't get convert to custom object, even
# they have same value.
self.assertEqual(new_layer.name, 'SerializableNestedInt')
self.assertEqual(new_layer.activation, keras.activations.relu)
self.assertEqual(new_layer.bias_regularizer.__class__,
keras.regularizers.L2)
self.assertEqual(new_layer.units.__class__, SerializableNestedInt)
self.assertEqual(new_layer.units, 3)
self.assertEqual(new_layer.units.int_obj.__class__, SerializableInt)
self.assertEqual(new_layer.units.int_obj, 4)
def test_nested_serializable_fn(self):
def serializable_fn(x):
"""A serializable function to pass out of a test layer's config."""
return x
class SerializableNestedInt(int):
"""A serializable object containing a serializable function."""
def __new__(cls, value, fn):
obj = int.__new__(cls, value)
obj.fn = fn
return obj
def get_config(self):
return {'value': int(self), 'fn': self.fn}
@classmethod
def from_config(cls, config):
return cls(**config)
layer = keras.layers.Dense(
SerializableNestedInt(3, serializable_fn),
activation='relu',
kernel_initializer='ones',
bias_regularizer='l2')
config = keras.layers.serialize(layer)
new_layer = keras.layers.deserialize(
config,
custom_objects={
'serializable_fn': serializable_fn,
'SerializableNestedInt': SerializableNestedInt
})
self.assertEqual(new_layer.activation, keras.activations.relu)
self.assertIsInstance(new_layer.bias_regularizer, keras.regularizers.L2)
self.assertIsInstance(new_layer.units, SerializableNestedInt)
self.assertEqual(new_layer.units, 3)
self.assertIs(new_layer.units.fn, serializable_fn)
def test_serializable_with_old_config(self):
# model config generated by tf-1.2.1
old_model_config = {
'class_name':
'Sequential',
'config': [{
'class_name': 'Dense',
'config': {
'name': 'dense_1',
'trainable': True,
'batch_input_shape': [None, 784],
'dtype': 'float32',
'units': 32,
'activation': 'linear',
'use_bias': True,
'kernel_initializer': {
'class_name': 'Ones',
'config': {
'dtype': 'float32'
}
},
'bias_initializer': {
'class_name': 'Zeros',
'config': {
'dtype': 'float32'
}
},
'kernel_regularizer': None,
'bias_regularizer': None,
'activity_regularizer': None,
'kernel_constraint': None,
'bias_constraint': None
}
}]
}
old_model = keras.utils.generic_utils.deserialize_keras_object(
old_model_config, module_objects={'Sequential': keras.Sequential})
new_model = keras.Sequential([
keras.layers.Dense(32, input_dim=784, kernel_initializer='Ones'),
])
input_data = np.random.normal(2, 1, (5, 784))
output = old_model.predict(input_data)
expected_output = new_model.predict(input_data)
self.assertAllEqual(output, expected_output)
def test_deserialize_unknown_object(self):
class CustomLayer(keras.layers.Layer):
pass
layer = CustomLayer()
config = keras.utils.generic_utils.serialize_keras_object(layer)
with self.assertRaisesRegexp(ValueError,
'passed to the `custom_objects` arg'):
keras.utils.generic_utils.deserialize_keras_object(config)
restored = keras.utils.generic_utils.deserialize_keras_object(
config, custom_objects={'CustomLayer': CustomLayer})
self.assertIsInstance(restored, CustomLayer)
class SliceArraysTest(test.TestCase):
def test_slice_arrays(self):
input_a = list([1, 2, 3])
self.assertEqual(
keras.utils.generic_utils.slice_arrays(input_a, start=0),
[None, None, None])
self.assertEqual(
keras.utils.generic_utils.slice_arrays(input_a, stop=3),
[None, None, None])
self.assertEqual(
keras.utils.generic_utils.slice_arrays(input_a, start=0, stop=1),
[None, None, None])
if __name__ == '__main__':
test.main()