STT-tensorflow/tensorflow/python/keras/premade/linear.py
Tomer Kaftan 0e87b6606e Change some internal instrumentation.
PiperOrigin-RevId: 335451439
Change-Id: I96f97ab4984f2de86511b9fb6a97a3ad6fa2f468
2020-10-05 11:05:37 -07:00

203 lines
7.2 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Built-in linear model classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import activations
from tensorflow.python.keras import initializers
from tensorflow.python.keras import regularizers
from tensorflow.python.keras.engine import base_layer
from tensorflow.python.keras.engine import input_spec
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.layers import core
from tensorflow.python.ops import nn
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.experimental.LinearModel')
class LinearModel(training.Model):
r"""Linear Model for regression and classification problems.
This model approximates the following function:
$$y = \beta + \sum_{i=1}^{N} w_{i} * x_{i}$$
where $$\beta$$ is the bias and $$w_{i}$$ is the weight for each feature.
Example:
```python
model = LinearModel()
model.compile(optimizer='sgd', loss='mse')
model.fit(x, y, epochs=epochs)
```
This model accepts sparse float inputs as well:
Example:
```python
model = LinearModel()
opt = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.MeanSquaredError()
with tf.GradientTape() as tape:
output = model(sparse_input)
loss = tf.reduce_mean(loss_fn(target, output))
grads = tape.gradient(loss, model.weights)
opt.apply_gradients(zip(grads, model.weights))
```
"""
def __init__(self,
units=1,
activation=None,
use_bias=True,
kernel_initializer='zeros',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
**kwargs):
"""Create a Linear Model.
Args:
units: Positive integer, output dimension without the batch size.
activation: Activation function to use.
If you don't specify anything, no activation is applied.
use_bias: whether to calculate the bias/intercept for this model. If set
to False, no bias/intercept will be used in calculations, e.g., the data
is already centered.
kernel_initializer: Initializer for the `kernel` weights matrices.
bias_initializer: Initializer for the bias vector.
kernel_regularizer: regularizer for kernel vectors.
bias_regularizer: regularizer for bias vector.
**kwargs: The keyword arguments that are passed on to BaseLayer.__init__.
"""
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
super(LinearModel, self).__init__(**kwargs)
base_layer.keras_premade_model_gauge.get_cell('Linear').set(True)
def build(self, input_shape):
if isinstance(input_shape, dict):
names = sorted(list(input_shape.keys()))
self.input_specs = []
self.dense_layers = []
for name in names:
shape = input_shape[name]
layer = core.Dense(
units=self.units,
use_bias=False,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.kernel_regularizer,
name=name)
layer.build(shape)
self.input_specs.append(
input_spec.InputSpec(shape=shape, name=name))
self.dense_layers.append(layer)
elif isinstance(input_shape, (tuple, list)) and all(
isinstance(shape, tensor_shape.TensorShape) for shape in input_shape):
self.dense_layers = []
for shape in input_shape:
layer = core.Dense(
units=self.units,
use_bias=False,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.kernel_regularizer)
layer.build(shape)
self.dense_layers.append(layer)
else:
# input_shape can be a single TensorShape or a tuple of ints.
layer = core.Dense(
units=self.units,
use_bias=False,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.kernel_regularizer)
layer.build(input_shape)
self.dense_layers = [layer]
if self.use_bias:
self.bias = self.add_weight(
'bias',
shape=self.units,
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
dtype=self.dtype,
trainable=True)
else:
self.bias = None
self.built = True
def call(self, inputs):
result = None
if isinstance(inputs, dict):
names = [layer.name for layer in self.dense_layers]
different_keys = set(names) - set(inputs.keys())
if different_keys:
raise ValueError(
'The input dictionary does not match '
'the structure expected by the model.'
'\n\tExpected keys: {}'
'\n\tReceived keys: {}'
'\n\tMissing keys: {}'.format(set(names), set(inputs.keys()),
different_keys))
inputs = [inputs[name] for name in names]
for inp, layer in zip(inputs, self.dense_layers):
output = layer(inp)
if result is None:
result = output
else:
result += output
elif isinstance(inputs, (tuple, list)):
for inp, layer in zip(inputs, self.dense_layers):
output = layer(inp)
if result is None:
result = output
else:
result += output
else:
result = self.dense_layers[0](inputs)
if self.use_bias:
result = nn.bias_add(result, self.bias)
if self.activation is not None:
return self.activation(result) # pylint: disable=not-callable
return result
def get_config(self):
config = {
'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
}
base_config = base_layer.Layer.get_config(self)
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
del custom_objects
return cls(**config)