STT-tensorflow/tensorflow/python/keras/optimizer_v2/rmsprop_test.py
Scott Zhu ab3601d340 Remove the usage of eager context in test code, and replace them with test combinations.
PiperOrigin-RevId: 329947449
Change-Id: Ie513d6547c6ba458515be31e4df84976893cfd3d
2020-09-03 11:05:50 -07:00

594 lines
24 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for rmsprop."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import itertools
import math
from absl.testing import parameterized
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras import combinations
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule
from tensorflow.python.keras.optimizer_v2 import rmsprop
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
_DATA_TYPES = [dtypes.half, dtypes.float32, dtypes.float64]
# TODO(b/143684500): Eigen to support complex sqrt
if not test_util.IsBuiltWithNvcc():
_DATA_TYPES += [dtypes.complex64, dtypes.complex128]
_TEST_PARAM_VALUES = [
# learning_rate, rho, momentum, epsilon, centered
[0.05, 0.9, 0.0, 1e-3, True],
[0.05, 0.9, 0.0, 1e-3, False],
[0.1, 0.9, 0.0, 1e-3, True],
[0.01, 0.9, 0.0, 1e-5, True],
[0.01, 0.9, 0.9, 1e-5, True],
]
_TESTPARAMS = [
[data_type] + values
for data_type, values in itertools.product(_DATA_TYPES, _TEST_PARAM_VALUES)
]
class RMSpropOptimizerTest(test.TestCase, parameterized.TestCase):
def _rmsprop_update_numpy(self, var, g, mg, rms, mom, lr, rho, momentum,
epsilon, centered):
rms_t = rms * rho + (1 - rho) * g * g
if centered:
mg_t = mg * rho + (1 - rho) * g
denom_t = rms_t - mg_t * mg_t
else:
mg_t = mg
denom_t = rms_t
if momentum > 0.:
mom_t = momentum * mom + lr * g / (np.sqrt(denom_t + epsilon))
var_t = var - mom_t
else:
mom_t = mom
var_t = var - lr * g / (np.sqrt(denom_t) + epsilon)
return var_t, mg_t, rms_t, mom_t
def _sparse_rmsprop_update_numpy(self, var, gindexs, gvalues, mg, rms, mom,
lr, rho, momentum, epsilon, centered):
mg_t = copy.deepcopy(mg)
rms_t = copy.deepcopy(rms)
mom_t = copy.deepcopy(mom)
var_t = copy.deepcopy(var)
for i in range(len(gindexs)):
gindex = gindexs[i]
gvalue = gvalues[i]
rms_t[gindex] = rms[gindex] * rho + (1 - rho) * gvalue * gvalue
if centered:
mg_t[gindex] = mg_t[gindex] * rho + (1 - rho) * gvalue
denom_t = rms_t[gindex] - mg_t[gindex] * mg_t[gindex]
else:
denom_t = rms_t[gindex]
if momentum > 0.:
mom_t[gindex] = momentum * mom[gindex] + lr * gvalue / np.sqrt(denom_t +
epsilon)
var_t[gindex] = var[gindex] - mom_t[gindex]
else:
mom_t[gindex] = mom[gindex]
var_t[gindex] = var[gindex] - lr * gvalue / (np.sqrt(denom_t) + epsilon)
return var_t, mg_t, rms_t, mom_t
def testDense(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS:
with ops.get_default_graph().as_default(), testing_utils.use_gpu():
# Initialize variables for numpy implementation.
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1, 0.2], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01, 0.2], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np, dtype=dtype)
var1 = variables.Variable(var1_np, dtype=dtype)
grads0 = constant_op.constant(grads0_np, dtype=dtype)
grads1 = constant_op.constant(grads1_np, dtype=dtype)
opt = rmsprop.RMSprop(
learning_rate=learning_rate,
rho=rho,
momentum=momentum,
epsilon=epsilon,
centered=centered)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
if centered:
mg0 = opt.get_slot(var0, "mg")
mg1 = opt.get_slot(var1, "mg")
else:
mg0 = None
mg1 = None
if momentum > 0.:
mom0 = opt.get_slot(var0, "momentum")
mom1 = opt.get_slot(var1, "momentum")
else:
mom0 = None
mom1 = None
rms0 = opt.get_slot(var0, "rms")
self.assertIsNotNone(rms0)
rms1 = opt.get_slot(var1, "rms")
self.assertIsNotNone(rms1)
mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
rms0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
rms1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 3 steps of RMSprop
for _ in range(1, 4):
self.evaluate(update)
var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy(
var0_np, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, rho,
momentum, epsilon, centered)
var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy(
var1_np, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, rho,
momentum, epsilon, centered)
# Validate updated params
if centered:
self.assertAllCloseAccordingToType(mg0_np, self.evaluate(mg0))
self.assertAllCloseAccordingToType(mg1_np, self.evaluate(mg1))
if momentum > 0.:
self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0))
self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1))
self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0))
self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1))
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testDenseWithLearningRateDecay(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with ops.Graph().as_default():
var0_np = np.array([1.0, 2.0])
grads0_np = np.array([0.1, 0.2])
var1_np = np.array([3.0, 4.0])
grads1_np = np.array([0.01, 0.2])
var0 = variables.Variable(var0_np)
var1 = variables.Variable(var1_np)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
learning_rate = 0.01
rho = 0.9
momentum = 0.0
epsilon = 1e-7
centered = False
decay = 0.5
opt = rmsprop.RMSprop(
learning_rate=learning_rate,
rho=rho,
momentum=momentum,
epsilon=epsilon,
centered=centered,
decay=decay)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
rms0 = opt.get_slot(var0, "rms")
self.assertIsNotNone(rms0)
rms1 = opt.get_slot(var1, "rms")
self.assertIsNotNone(rms1)
if momentum > 0.:
mom0 = opt.get_slot(var0, "momentum")
mom1 = opt.get_slot(var1, "momentum")
else:
mom0 = None
mom1 = None
mg0_np = np.array([0.0, 0.0])
mg1_np = np.array([0.0, 0.0])
rms0_np = np.array([0.0, 0.0])
rms1_np = np.array([0.0, 0.0])
mom0_np = np.array([0.0, 0.0])
mom1_np = np.array([0.0, 0.0])
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 4 steps of RMSprop
for t in range(2):
self.evaluate(update)
lr = learning_rate / (1 + decay * t)
var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy(
var0_np, grads0_np, mg0_np, rms0_np, mom0_np, lr, rho, momentum,
epsilon, centered)
var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy(
var1_np, grads1_np, mg1_np, rms1_np, mom1_np, lr, rho, momentum,
epsilon, centered)
# Validate updated params
self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0))
self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1))
if momentum > 0.:
self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0))
self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1))
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testDenseWithLearningRateInverseTimeDecay(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with ops.Graph().as_default():
var0_np = np.array([1.0, 2.0])
grads0_np = np.array([0.1, 0.2])
var1_np = np.array([3.0, 4.0])
grads1_np = np.array([0.01, 0.2])
var0 = variables.Variable(var0_np)
var1 = variables.Variable(var1_np)
grads0 = constant_op.constant(grads0_np)
grads1 = constant_op.constant(grads1_np)
learning_rate = 0.01
rho = 0.9
momentum = 0.0
epsilon = 1e-7
centered = False
decay = 0.5
lr_schedule = learning_rate_schedule.InverseTimeDecay(
learning_rate, decay_steps=1.0, decay_rate=decay)
opt = rmsprop.RMSprop(
learning_rate=lr_schedule,
rho=rho,
momentum=momentum,
epsilon=epsilon,
centered=centered)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
rms0 = opt.get_slot(var0, "rms")
self.assertIsNotNone(rms0)
rms1 = opt.get_slot(var1, "rms")
self.assertIsNotNone(rms1)
if momentum > 0.:
mom0 = opt.get_slot(var0, "momentum")
mom1 = opt.get_slot(var1, "momentum")
else:
mom0 = None
mom1 = None
mg0_np = np.array([0.0, 0.0])
mg1_np = np.array([0.0, 0.0])
rms0_np = np.array([0.0, 0.0])
rms1_np = np.array([0.0, 0.0])
mom0_np = np.array([0.0, 0.0])
mom1_np = np.array([0.0, 0.0])
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 4 steps of RMSprop
for t in range(2):
self.evaluate(update)
lr = learning_rate / (1 + decay * t)
var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy(
var0_np, grads0_np, mg0_np, rms0_np, mom0_np, lr, rho, momentum,
epsilon, centered)
var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy(
var1_np, grads1_np, mg1_np, rms1_np, mom1_np, lr, rho, momentum,
epsilon, centered)
# Validate updated params
self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0))
self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1))
if momentum > 0.:
self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0))
self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1))
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testMinimizeSparseResourceVariable(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with ops.Graph().as_default():
for dtype in _DATA_TYPES:
var0 = variables.Variable([[1.0, 2.0]], dtype=dtype)
x = constant_op.constant([[4.0], [5.0]], dtype=dtype)
def loss():
pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) # pylint: disable=cell-var-from-loop
return pred * pred
sgd_op = rmsprop.RMSprop(
learning_rate=1.0, rho=0.0, momentum=0.0, epsilon=0.0,
centered=False).minimize(
loss, var_list=[var0])
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0))
# Run 1 step of sgd
self.evaluate(sgd_op)
# Validate updated params
self.assertAllCloseAccordingToType([[0., 1.]],
self.evaluate(var0),
atol=0.01)
def testMinimizeSparseResourceVariableCentered(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
with ops.Graph().as_default():
for dtype in _DATA_TYPES:
if test_util.is_xla_enabled() and dtype.is_complex:
self.skipTest("b/143578550")
var0 = variables.Variable([[1.0, 2.0]], dtype=dtype)
x = constant_op.constant([[4.0], [5.0]], dtype=dtype)
def loss():
pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) # pylint: disable=cell-var-from-loop
return pred * pred
# loss = lambda: pred * pred # pylint: disable=cell-var-from-loop
sgd_op = rmsprop.RMSprop(
learning_rate=1.0, rho=0.0, momentum=0.0, epsilon=1.0,
centered=True).minimize(
loss, var_list=[var0])
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0))
# Run 1 step of sgd
self.evaluate(sgd_op)
# Validate updated params
self.assertAllCloseAccordingToType([[-111, -138]],
self.evaluate(var0),
atol=0.01)
def testSparse(self):
# TODO(tanzheny, omalleyt): Fix test in eager mode.
for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS:
with ops.get_default_graph().as_default(), testing_utils.use_gpu():
# Initialize variables for numpy implementation.
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
grads0_np = np.array([0.1], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
grads1_np = np.array([0.01], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np)
var1 = variables.Variable(var1_np)
grads0_np_indices = np.array([0], dtype=np.int32)
grads0 = ops.IndexedSlices(
constant_op.constant(grads0_np),
constant_op.constant(grads0_np_indices), constant_op.constant([1]))
grads1_np_indices = np.array([1], dtype=np.int32)
grads1 = ops.IndexedSlices(
constant_op.constant(grads1_np),
constant_op.constant(grads1_np_indices), constant_op.constant([1]))
opt = rmsprop.RMSprop(
learning_rate=learning_rate,
rho=rho,
momentum=momentum,
epsilon=epsilon,
centered=centered)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
if centered:
mg0 = opt.get_slot(var0, "mg")
self.assertEqual(mg0 is not None, centered)
mg1 = opt.get_slot(var1, "mg")
self.assertEqual(mg1 is not None, centered)
else:
mg0 = None
mg1 = None
rms0 = opt.get_slot(var0, "rms")
self.assertIsNotNone(rms0)
rms1 = opt.get_slot(var1, "rms")
self.assertIsNotNone(rms1)
if momentum > 0.:
mom0 = opt.get_slot(var0, "momentum")
mom1 = opt.get_slot(var1, "momentum")
else:
mom0 = None
mom1 = None
mg0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
mg1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
rms0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
rms1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
mom0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
mom1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 3 steps of RMSprop
for _ in range(1, 4):
self.evaluate(update)
var0_np, mg0_np, rms0_np, mom0_np = self._sparse_rmsprop_update_numpy(
var0_np, grads0_np_indices, grads0_np, mg0_np, rms0_np, mom0_np,
learning_rate, rho, momentum, epsilon, centered)
var1_np, mg1_np, rms1_np, mom1_np = self._sparse_rmsprop_update_numpy(
var1_np, grads1_np_indices, grads1_np, mg1_np, rms1_np, mom1_np,
learning_rate, rho, momentum, epsilon, centered)
# Validate updated params
if centered:
self.assertAllCloseAccordingToType(mg0_np, self.evaluate(mg0))
self.assertAllCloseAccordingToType(mg1_np, self.evaluate(mg1))
self.assertAllCloseAccordingToType(rms0_np, self.evaluate(rms0))
self.assertAllCloseAccordingToType(rms1_np, self.evaluate(rms1))
if momentum > 0.:
self.assertAllCloseAccordingToType(mom0_np, self.evaluate(mom0))
self.assertAllCloseAccordingToType(mom1_np, self.evaluate(mom1))
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
@combinations.generate(combinations.combine(mode=["eager"]))
def testCallableParams(self):
for dtype in _DATA_TYPES:
var0 = variables.Variable([1.0, 2.0], dtype=dtype)
var1 = variables.Variable([3.0, 4.0], dtype=dtype)
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
learning_rate = lambda: 2.0
rho = lambda: 0.9
momentum = lambda: 0.0
epsilon = 1.0
opt = rmsprop.RMSprop(learning_rate, rho, momentum, epsilon)
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Step 1: the rms accumulators where 1. So we should see a normal
# update: v -= grad * learning_rate
opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
# Check the parameters.
self.assertAllCloseAccordingToType(
np.array([
1.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)),
2.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0))
]), self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([
3.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)),
4.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0))
]), self.evaluate(var1))
# Step 2: the root mean square accumulators contain the previous update.
opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
# Check the parameters.
self.assertAllCloseAccordingToType(
np.array([
1.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)) -
(0.1 * 2.0 / math.sqrt(0.001 * 0.9 + 0.001 + 1.0)),
2.0 - (0.1 * 2.0 / math.sqrt(0.001 + 1.0)) -
(0.1 * 2.0 / math.sqrt(0.001 * 0.9 + 0.001 + 1.0))
]), self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([
3.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)) -
(0.01 * 2.0 / math.sqrt(0.00001 * 0.9 + 1e-5 + 1.0)),
4.0 - (0.01 * 2.0 / math.sqrt(0.00001 + 1.0)) -
(0.01 * 2.0 / math.sqrt(0.00001 * 0.9 + 1e-5 + 1.0))
]), self.evaluate(var1))
def testConstructRMSpropWithLR(self):
opt = rmsprop.RMSprop(lr=1.0)
opt_2 = rmsprop.RMSprop(learning_rate=0.1, lr=1.0)
opt_3 = rmsprop.RMSprop(learning_rate=0.1)
self.assertIsInstance(opt.lr, variables.Variable)
self.assertIsInstance(opt_2.lr, variables.Variable)
self.assertIsInstance(opt_3.lr, variables.Variable)
self.evaluate(variables.global_variables_initializer())
self.assertAllClose(self.evaluate(opt.lr), (1.0))
self.assertAllClose(self.evaluate(opt_2.lr), (1.0))
self.assertAllClose(self.evaluate(opt_3.lr), (0.1))
@combinations.generate(combinations.combine(mode=["eager"]))
def testSlotsUniqueEager(self):
v1 = variables.Variable(1.)
v2 = variables.Variable(1.)
opt = rmsprop.RMSprop(1., momentum=0., centered=False)
opt.minimize(lambda: v1 + v2, var_list=[v1, v2])
# There should be iteration, and one unique slot variable for v1 and v2.
self.assertLen(set({id(v) for v in opt.variables()}), 3)
self.assertEqual(
self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))
opt = rmsprop.RMSprop(learning_rate=1., momentum=0.2, centered=False)
opt.minimize(lambda: v1 + v2, var_list=[v1, v2])
# There should be iteration, and two unique slot variables for v1 and v2.
self.assertLen(set({id(v) for v in opt.variables()}), 5)
self.assertEqual(
self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))
opt = rmsprop.RMSprop(learning_rate=1., momentum=0.2, centered=True)
opt.minimize(lambda: v1 + v2, var_list=[v1, v2])
# There should be iteration, and three unique slot variables for v1 and v2
self.assertLen(set({id(v) for v in opt.variables()}), 7)
self.assertEqual(
self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class SlotColocationTest(test.TestCase, parameterized.TestCase):
@parameterized.parameters([True, False])
@test_util.run_gpu_only
def testRunMinimizeOnGPUForCPUVariables(self, use_resource):
with ops.device("/device:CPU:0"):
if use_resource:
var0 = variables.Variable([1.0, 2.0], dtype=dtypes.float32)
var1 = variables.Variable([3.0, 4.0], dtype=dtypes.float32)
else:
var0 = variables.Variable([1.0, 2.0], dtype=dtypes.float32)
var1 = variables.Variable([3.0, 4.0], dtype=dtypes.float32)
def loss():
return 5 * var0 + 3 * var1
opt = rmsprop.RMSprop(
learning_rate=1.0, decay=0.9, momentum=0.5, epsilon=1.0)
# Fetch params to validate initial values
self.evaluate(variables.global_variables_initializer())
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Run 1 step through optimizer on GPU.
# Slot variables are created the first time optimizer is used on some
# variable. This tests that slot variables will be colocated with the base
# variable.
with ops.device("/device:GPU:0"):
# Note that for eager execution, minimize expects a function instead of a
# Tensor.
opt_op = opt.minimize(loss, [var0, var1])
self.evaluate(variables.global_variables_initializer())
self.evaluate(opt_op)
# Validate updated params, All variables should have decreased.
self.assertTrue(all(v < 0.0 for v in self.evaluate(var0)),
msg="updated variables: %s" % self.evaluate(var0))
self.assertTrue(all(v < 2.0 for v in self.evaluate(var1)),
msg="updated variables: %s" % self.evaluate(var1))
if __name__ == "__main__":
test.main()