STT-tensorflow/tensorflow/python/keras/layers/separable_convolutional_test.py
2019-01-10 22:28:17 -08:00

168 lines
5.7 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for separable convolutional layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test
@keras_parameterized.run_all_keras_modes
class SeparableConv1DTest(keras_parameterized.TestCase):
def _run_test(self, kwargs):
num_samples = 2
stack_size = 3
length = 7
with self.cached_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.SeparableConv1D,
kwargs=kwargs,
input_shape=(num_samples, length, stack_size))
@parameterized.named_parameters(
('padding_valid', {'padding': 'valid'}),
('padding_same', {'padding': 'same'}),
('padding_same_dilation_2', {'padding': 'same', 'dilation_rate': 2}),
('padding_causal', {'padding': 'causal'}),
('strides', {'strides': 2}),
('dilation_rate', {'dilation_rate': 2}),
('depth_multiplier', {'depth_multiplier': 2}),
)
def test_separable_conv1d(self, kwargs):
kwargs['filters'] = 2
kwargs['kernel_size'] = 3
self._run_test(kwargs)
def test_separable_conv1d_regularizers(self):
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'depthwise_regularizer': 'l2',
'pointwise_regularizer': 'l2',
'bias_regularizer': 'l2',
'activity_regularizer': 'l2',
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.SeparableConv1D(**kwargs)
layer.build((None, 5, 2))
self.assertEqual(len(layer.losses), 3)
layer(keras.backend.variable(np.ones((1, 5, 2))))
self.assertEqual(len(layer.losses), 4)
def test_separable_conv1d_constraints(self):
d_constraint = lambda x: x
p_constraint = lambda x: x
b_constraint = lambda x: x
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'pointwise_constraint': p_constraint,
'depthwise_constraint': d_constraint,
'bias_constraint': b_constraint,
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.SeparableConv1D(**kwargs)
layer.build((None, 5, 2))
self.assertEqual(layer.depthwise_kernel.constraint, d_constraint)
self.assertEqual(layer.pointwise_kernel.constraint, p_constraint)
self.assertEqual(layer.bias.constraint, b_constraint)
@keras_parameterized.run_all_keras_modes
class SeparableConv2DTest(keras_parameterized.TestCase):
def _run_test(self, kwargs):
num_samples = 2
stack_size = 3
num_row = 7
num_col = 6
with self.cached_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.SeparableConv2D,
kwargs=kwargs,
input_shape=(num_samples, num_row, num_col, stack_size))
@parameterized.named_parameters(
('padding_valid', {'padding': 'valid'}),
('padding_same', {'padding': 'same'}),
('padding_same_dilation_2', {'padding': 'same', 'dilation_rate': 2}),
('strides', {'strides': 2}),
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
('data_format', {'data_format': 'channels_first'}),
('dilation_rate', {'dilation_rate': 2}),
('depth_multiplier', {'depth_multiplier': 2}),
)
def test_separable_conv2d(self, kwargs):
kwargs['filters'] = 2
kwargs['kernel_size'] = 3
if 'data_format' not in kwargs or test.is_gpu_available(cuda_only=True):
self._run_test(kwargs)
def test_separable_conv2d_regularizers(self):
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'depthwise_regularizer': 'l2',
'pointwise_regularizer': 'l2',
'bias_regularizer': 'l2',
'activity_regularizer': 'l2',
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.SeparableConv2D(**kwargs)
layer.build((None, 5, 5, 2))
self.assertEqual(len(layer.losses), 3)
layer(keras.backend.variable(np.ones((1, 5, 5, 2))))
self.assertEqual(len(layer.losses), 4)
def test_separable_conv2d_constraints(self):
d_constraint = lambda x: x
p_constraint = lambda x: x
b_constraint = lambda x: x
kwargs = {
'filters': 3,
'kernel_size': 3,
'padding': 'valid',
'pointwise_constraint': p_constraint,
'depthwise_constraint': d_constraint,
'bias_constraint': b_constraint,
'strides': 1
}
with self.cached_session(use_gpu=True):
layer = keras.layers.SeparableConv2D(**kwargs)
layer.build((None, 5, 5, 2))
self.assertEqual(layer.depthwise_kernel.constraint, d_constraint)
self.assertEqual(layer.pointwise_kernel.constraint, p_constraint)
self.assertEqual(layer.bias.constraint, b_constraint)