288 lines
9.5 KiB
Python
288 lines
9.5 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for GRU layer."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.python import keras
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.keras import combinations
|
|
from tensorflow.python.keras import keras_parameterized
|
|
from tensorflow.python.keras import testing_utils
|
|
from tensorflow.python.keras.utils import np_utils
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
@keras_parameterized.run_all_keras_modes
|
|
class GRULayerTest(keras_parameterized.TestCase):
|
|
|
|
def test_return_sequences_GRU(self):
|
|
num_samples = 2
|
|
timesteps = 3
|
|
embedding_dim = 4
|
|
units = 2
|
|
testing_utils.layer_test(
|
|
keras.layers.GRU,
|
|
kwargs={'units': units,
|
|
'return_sequences': True},
|
|
input_shape=(num_samples, timesteps, embedding_dim))
|
|
|
|
@testing_utils.run_v2_only
|
|
def test_float64_GRU(self):
|
|
if test.is_built_with_rocm():
|
|
self.skipTest('Double type is yet not supported in ROCm')
|
|
num_samples = 2
|
|
timesteps = 3
|
|
embedding_dim = 4
|
|
units = 2
|
|
testing_utils.layer_test(
|
|
keras.layers.GRU,
|
|
kwargs={'units': units,
|
|
'return_sequences': True,
|
|
'dtype': 'float64'},
|
|
input_shape=(num_samples, timesteps, embedding_dim),
|
|
input_dtype='float64')
|
|
|
|
def test_dynamic_behavior_GRU(self):
|
|
num_samples = 2
|
|
timesteps = 3
|
|
embedding_dim = 4
|
|
units = 2
|
|
layer = keras.layers.GRU(units, input_shape=(None, embedding_dim))
|
|
model = keras.models.Sequential()
|
|
model.add(layer)
|
|
model.compile(
|
|
'rmsprop',
|
|
'mse',
|
|
run_eagerly=testing_utils.should_run_eagerly())
|
|
x = np.random.random((num_samples, timesteps, embedding_dim))
|
|
y = np.random.random((num_samples, units))
|
|
model.train_on_batch(x, y)
|
|
|
|
def test_dropout_GRU(self):
|
|
num_samples = 2
|
|
timesteps = 3
|
|
embedding_dim = 4
|
|
units = 2
|
|
testing_utils.layer_test(
|
|
keras.layers.GRU,
|
|
kwargs={'units': units,
|
|
'dropout': 0.1,
|
|
'recurrent_dropout': 0.1},
|
|
input_shape=(num_samples, timesteps, embedding_dim))
|
|
|
|
def test_recurrent_dropout_with_implementation_restriction(self):
|
|
layer = keras.layers.GRU(2, recurrent_dropout=0.1, implementation=2)
|
|
# The implementation is force to 1 due to the limit of recurrent_dropout.
|
|
self.assertEqual(layer.implementation, 1)
|
|
|
|
@parameterized.parameters([0, 1, 2])
|
|
def test_implementation_mode_GRU(self, implementation_mode):
|
|
num_samples = 2
|
|
timesteps = 3
|
|
embedding_dim = 4
|
|
units = 2
|
|
testing_utils.layer_test(
|
|
keras.layers.GRU,
|
|
kwargs={'units': units,
|
|
'implementation': implementation_mode},
|
|
input_shape=(num_samples, timesteps, embedding_dim))
|
|
|
|
def test_reset_after_GRU(self):
|
|
num_samples = 2
|
|
timesteps = 3
|
|
embedding_dim = 4
|
|
units = 2
|
|
|
|
(x_train, y_train), _ = testing_utils.get_test_data(
|
|
train_samples=num_samples,
|
|
test_samples=0,
|
|
input_shape=(timesteps, embedding_dim),
|
|
num_classes=units)
|
|
y_train = np_utils.to_categorical(y_train, units)
|
|
|
|
inputs = keras.layers.Input(shape=[timesteps, embedding_dim])
|
|
gru_layer = keras.layers.GRU(units,
|
|
reset_after=True)
|
|
output = gru_layer(inputs)
|
|
gru_model = keras.models.Model(inputs, output)
|
|
gru_model.compile(
|
|
'rmsprop',
|
|
'mse',
|
|
run_eagerly=testing_utils.should_run_eagerly())
|
|
gru_model.fit(x_train, y_train)
|
|
gru_model.predict(x_train)
|
|
|
|
def test_with_masking_layer_GRU(self):
|
|
if test.is_built_with_rocm():
|
|
self.skipTest('MIOpen only supports packed input output')
|
|
layer_class = keras.layers.GRU
|
|
inputs = np.random.random((2, 3, 4))
|
|
targets = np.abs(np.random.random((2, 3, 5)))
|
|
targets /= targets.sum(axis=-1, keepdims=True)
|
|
model = keras.models.Sequential()
|
|
model.add(keras.layers.Masking(input_shape=(3, 4)))
|
|
model.add(layer_class(units=5, return_sequences=True, unroll=False))
|
|
model.compile(
|
|
loss='categorical_crossentropy',
|
|
optimizer='rmsprop',
|
|
run_eagerly=testing_utils.should_run_eagerly())
|
|
model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1)
|
|
|
|
def test_statefulness_GRU(self):
|
|
if test.is_built_with_rocm():
|
|
self.skipTest('MIOpen only supports packed input output')
|
|
num_samples = 2
|
|
timesteps = 3
|
|
embedding_dim = 4
|
|
units = 2
|
|
layer_class = keras.layers.GRU
|
|
|
|
model = keras.models.Sequential()
|
|
model.add(
|
|
keras.layers.Embedding(
|
|
4,
|
|
embedding_dim,
|
|
mask_zero=True,
|
|
input_length=timesteps,
|
|
batch_input_shape=(num_samples, timesteps)))
|
|
layer = layer_class(
|
|
units, return_sequences=False, stateful=True, weights=None)
|
|
model.add(layer)
|
|
model.compile(
|
|
optimizer='sgd',
|
|
loss='mse',
|
|
run_eagerly=testing_utils.should_run_eagerly())
|
|
out1 = model.predict(np.ones((num_samples, timesteps)))
|
|
self.assertEqual(out1.shape, (num_samples, units))
|
|
|
|
# train once so that the states change
|
|
model.train_on_batch(
|
|
np.ones((num_samples, timesteps)), np.ones((num_samples, units)))
|
|
out2 = model.predict(np.ones((num_samples, timesteps)))
|
|
|
|
# if the state is not reset, output should be different
|
|
self.assertNotEqual(out1.max(), out2.max())
|
|
|
|
# check that output changes after states are reset
|
|
# (even though the model itself didn't change)
|
|
layer.reset_states()
|
|
out3 = model.predict(np.ones((num_samples, timesteps)))
|
|
self.assertNotEqual(out2.max(), out3.max())
|
|
|
|
# check that container-level reset_states() works
|
|
model.reset_states()
|
|
out4 = model.predict(np.ones((num_samples, timesteps)))
|
|
np.testing.assert_allclose(out3, out4, atol=1e-5)
|
|
|
|
# check that the call to `predict` updated the states
|
|
out5 = model.predict(np.ones((num_samples, timesteps)))
|
|
self.assertNotEqual(out4.max(), out5.max())
|
|
|
|
# Check masking
|
|
layer.reset_states()
|
|
|
|
left_padded_input = np.ones((num_samples, timesteps))
|
|
left_padded_input[0, :1] = 0
|
|
left_padded_input[1, :2] = 0
|
|
out6 = model.predict(left_padded_input)
|
|
|
|
layer.reset_states()
|
|
|
|
right_padded_input = np.ones((num_samples, timesteps))
|
|
right_padded_input[0, -1:] = 0
|
|
right_padded_input[1, -2:] = 0
|
|
out7 = model.predict(right_padded_input)
|
|
|
|
np.testing.assert_allclose(out7, out6, atol=1e-5)
|
|
|
|
def test_get_initial_states(self):
|
|
batch_size = 4
|
|
cell = keras.layers.GRUCell(20)
|
|
initial_state = cell.get_initial_state(
|
|
batch_size=batch_size, dtype=dtypes.float32)
|
|
_, state = cell(np.ones((batch_size, 20), dtype=np.float32), initial_state)
|
|
self.assertEqual(state.shape, initial_state.shape)
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
|
|
class GRULayerGenericTest(test.TestCase):
|
|
|
|
def test_constraints_GRU(self):
|
|
embedding_dim = 4
|
|
layer_class = keras.layers.GRU
|
|
k_constraint = keras.constraints.max_norm(0.01)
|
|
r_constraint = keras.constraints.max_norm(0.01)
|
|
b_constraint = keras.constraints.max_norm(0.01)
|
|
layer = layer_class(
|
|
5,
|
|
return_sequences=False,
|
|
weights=None,
|
|
input_shape=(None, embedding_dim),
|
|
kernel_constraint=k_constraint,
|
|
recurrent_constraint=r_constraint,
|
|
bias_constraint=b_constraint)
|
|
layer.build((None, None, embedding_dim))
|
|
self.assertEqual(layer.cell.kernel.constraint, k_constraint)
|
|
self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint)
|
|
self.assertEqual(layer.cell.bias.constraint, b_constraint)
|
|
|
|
def test_from_config_GRU(self):
|
|
layer_class = keras.layers.GRU
|
|
for stateful in (False, True):
|
|
l1 = layer_class(units=1, stateful=stateful)
|
|
l2 = layer_class.from_config(l1.get_config())
|
|
assert l1.get_config() == l2.get_config()
|
|
|
|
def test_deep_copy_GRU(self):
|
|
cell = keras.layers.GRUCell(5)
|
|
copied_cell = copy.deepcopy(cell)
|
|
self.assertEqual(copied_cell.units, 5)
|
|
self.assertEqual(cell.get_config(), copied_cell.get_config())
|
|
|
|
def test_regularizers_GRU(self):
|
|
embedding_dim = 4
|
|
layer_class = keras.layers.GRU
|
|
layer = layer_class(
|
|
5,
|
|
return_sequences=False,
|
|
weights=None,
|
|
input_shape=(None, embedding_dim),
|
|
kernel_regularizer=keras.regularizers.l1(0.01),
|
|
recurrent_regularizer=keras.regularizers.l1(0.01),
|
|
bias_regularizer='l2',
|
|
activity_regularizer='l1')
|
|
layer.build((None, None, 2))
|
|
self.assertEqual(len(layer.losses), 3)
|
|
|
|
x = keras.backend.variable(np.ones((2, 3, 2)))
|
|
layer(x)
|
|
if context.executing_eagerly():
|
|
self.assertEqual(len(layer.losses), 4)
|
|
else:
|
|
self.assertEqual(len(layer.get_losses_for(x)), 1)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|