STT-tensorflow/tensorflow/python/keras/integration_test/gradients_test.py
Allen Lavoie d5b5e1148a Add a Keras LSTM+batch_jacobian integration test
PiperOrigin-RevId: 335425103
Change-Id: Ife380fe0ff62baaac80dde0a990eb561b7664164
2020-10-05 08:54:01 -07:00

113 lines
3.7 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
class TestKerasModelClass(tf.keras.Model):
"""A simple tensorflow keras Model class definition."""
def __init__(self, width):
super(TestKerasModelClass, self).__init__()
self.width = width
def build(self, input_shape):
self.weight = self.add_weight(
name="test_keras_var",
shape=(self.width,),
dtype=tf.float32,
trainable=True,
)
def call(self, inputs):
return self.weight * inputs
class GradientsTest(tf.test.TestCase):
def _TestVariablesGradient(self, inputs, test_model, vars_to_grad):
"""Returns gradients of `test_model` with respect to `vars_to_grad`."""
test_model_re = tf.recompute_grad(test_model)
with tf.GradientTape(persistent=True) as tape:
tape.watch(vars_to_grad)
out_re = test_model_re(inputs)
out = test_model(inputs)
grads_re = tape.gradient(out_re, vars_to_grad)
grads = tape.gradient(out, vars_to_grad)
return grads_re, grads
def testKerasRecompute(self):
"""Checks that recompute_grad works for a simple Keras Model."""
test_model = TestKerasModelClass(10)
test_input = tf.constant(tf.zeros((10, 10), dtype=np.float32))
# Ensures keras model is initialized.
test_model(test_input) # pylint: disable=not-callable
grads_re, grads = self._TestVariablesGradient(test_input, test_model,
test_input)
grads_re = self.evaluate(grads_re)
grads = self.evaluate(grads)
for g, g_re in zip(grads, grads_re):
self.assertAllClose(g, g_re)
grads_re, grads = self._TestVariablesGradient(test_input, test_model,
test_model.variables)
grads_re = self.evaluate(grads_re)
grads = self.evaluate(grads)
for g, g_re in zip(grads, grads_re):
self.assertAllClose(g, g_re)
def testLSTMBatchJacobian(self):
class HasLSTM(tf.keras.Model):
def __init__(self):
super(HasLSTM, self).__init__()
self.lstm = tf.keras.layers.LSTM(units=5)
self.dense = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
def call(self, x):
return self.dense(self.lstm(x))
m = HasLSTM()
def jacobian(x):
with tf.GradientTape() as tape:
tape.watch(x)
y = m(x) # pylint: disable=not-callable
return tape.batch_jacobian(y, x)
inp = tf.nn.l2_normalize(tf.ones([1, 2, 3]), axis=[1, 2])
eager_result = jacobian(inp)
function_result = tf.function(jacobian)(inp)
self.assertAllClose(eager_result, function_result)
backprop_result, numeric_result = tf.test.compute_gradient(
m, [inp], delta=1e-3)
self.assertAllClose(numeric_result, backprop_result, rtol=1e-2)
self.assertAllClose(tf.reshape(numeric_result, [-1]),
tf.reshape(eager_result, [-1]), rtol=1e-2)
if __name__ == "__main__":
tf.test.main()