221 lines
7.9 KiB
C++
221 lines
7.9 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/python/framework/python_api_dispatcher.h"
|
|
|
|
#include <set>
|
|
|
|
#include "absl/container/inlined_vector.h"
|
|
#include "absl/strings/str_join.h"
|
|
#include "tensorflow/core/platform/logging.h"
|
|
#include "tensorflow/python/lib/core/safe_pyobject_ptr.h"
|
|
#include "tensorflow/python/util/util.h"
|
|
|
|
namespace tensorflow {
|
|
|
|
using ParamInfo = PythonAPIDispatcher::ParamInfo;
|
|
|
|
// List of python types to check for dispatch. In most cases, this vector
|
|
// will have size zero or one; and sizes greater than 3 should be rare.
|
|
using TypeList = absl::InlinedVector<PyTypeObject*, 3>;
|
|
|
|
namespace {
|
|
|
|
// Returns the __tf__dispatch__ attribute of `obj`.
|
|
Safe_PyObjectPtr GetAttr_TFDispatch(PyObject* obj) {
|
|
#if PY_MAJOR_VERSION < 3
|
|
// Python 2.x:
|
|
static PyObject* attr = PyString_InternFromString("__tf_dispatch__");
|
|
#else
|
|
// Python 3.x:
|
|
static PyObject* attr = PyUnicode_InternFromString("__tf_dispatch__");
|
|
#endif
|
|
return Safe_PyObjectPtr(PyObject_GetAttr(obj, attr));
|
|
}
|
|
|
|
// Searches `params` for dispatchable types, and returns a vector of borrowed
|
|
// references to those types. Removes consecutive duplicates (i.e., if a
|
|
// dispatchable parameter has the same type as the previously encountered
|
|
// dispatcahble parameter, then it's type is not added again), so the result
|
|
// will usually have a length of zero or one; but in the general case, it may be
|
|
// longer, and may contain (nonconsecutive) duplicates.
|
|
//
|
|
// Assumes that `params` is a tuple, and that all parameter indices in
|
|
// `dispatch_params` and `dispatch_list_params` are valid.
|
|
TypeList FindDispatchTypes(PyObject* params,
|
|
const std::vector<ParamInfo>& dispatchable_params) {
|
|
TypeList dispatch_types;
|
|
for (const auto& param : dispatchable_params) {
|
|
DCHECK_GE(param.index, 0);
|
|
DCHECK_LT(param.index, PyTuple_GET_SIZE(params));
|
|
PyObject* value = PyTuple_GET_ITEM(params, param.index);
|
|
if (param.is_list) {
|
|
DCHECK(PyList_Check(value));
|
|
Py_ssize_t num_items = PyList_Size(value);
|
|
for (Py_ssize_t i = 0; i < num_items; ++i) {
|
|
PyObject* item = PyList_GET_ITEM(value, i);
|
|
// TODO(b/164980194) Consider changing IsDispatchable to not use a
|
|
// cache. This may impact efficiency (needs to be measured), but would
|
|
// allow us to support monkey-patching classes to be dispatchable.
|
|
if (swig::IsDispatchable(item)) {
|
|
if (dispatch_types.empty() ||
|
|
value->ob_type != dispatch_types.back()) {
|
|
dispatch_types.push_back(item->ob_type);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (swig::IsDispatchable(value)) {
|
|
if (dispatch_types.empty() || value->ob_type != dispatch_types.back()) {
|
|
dispatch_types.push_back(value->ob_type);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return dispatch_types;
|
|
}
|
|
|
|
// Removes duplicates from `dispatch_types`, and moves any subtypes to
|
|
// before their supertypes. Note: this method is only called when
|
|
// `dispatch_types.size() > 1`.
|
|
void SortDispatchTypes(TypeList& dispatch_types) {
|
|
// Remove duplicates. Note: this is O(n^2) in the number of dispatchable
|
|
// types, but we expect this number to be very small in almost every case
|
|
// (usually zero, sometimes one, and rarely larger than two).
|
|
for (int i = 0; i < dispatch_types.size() - 1; ++i) {
|
|
if (dispatch_types[i] == nullptr) continue;
|
|
for (int j = i + 1; j < dispatch_types.size(); ++j) {
|
|
if (dispatch_types[i] == dispatch_types[j]) {
|
|
dispatch_types[j] = nullptr; // mark duplicate
|
|
}
|
|
}
|
|
}
|
|
dispatch_types.erase(
|
|
std::remove_if(dispatch_types.begin(), dispatch_types.end(),
|
|
[](PyTypeObject* t) { return t == nullptr; }),
|
|
dispatch_types.end());
|
|
|
|
// Move subclasses before superclasses. As above, this is O(n^2), but we
|
|
// expect n to be small.
|
|
TypeList sorted;
|
|
TypeList subtypes;
|
|
for (int i = 0; i < dispatch_types.size(); ++i) {
|
|
if (dispatch_types[i] == nullptr) continue;
|
|
subtypes.clear();
|
|
for (int j = i + 1; j < dispatch_types.size(); ++j) {
|
|
if (dispatch_types[j] == nullptr) continue;
|
|
if (PyType_IsSubtype(dispatch_types[j], dispatch_types[i])) {
|
|
subtypes.push_back(dispatch_types[j]);
|
|
dispatch_types[j] = nullptr; // mark as already added.
|
|
}
|
|
}
|
|
if (!subtypes.empty()) {
|
|
std::sort(subtypes.begin(), subtypes.end(), PyType_IsSubtype);
|
|
sorted.insert(sorted.end(), subtypes.begin(), subtypes.end());
|
|
}
|
|
sorted.push_back(dispatch_types[i]);
|
|
}
|
|
DCHECK_EQ(dispatch_types.size(), sorted.size());
|
|
dispatch_types.swap(sorted);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
PythonAPIDispatcher::PythonAPIDispatcher(const std::string& api_name,
|
|
PyObject* api_func, int num_params,
|
|
bool right_to_left)
|
|
: api_name_(PyUnicode_FromStringAndSize(api_name.c_str(), api_name.size())),
|
|
api_func_(api_func),
|
|
num_params_(num_params),
|
|
right_to_left_(right_to_left) {
|
|
Py_INCREF(api_func);
|
|
}
|
|
|
|
bool PythonAPIDispatcher::Initialize(
|
|
std::vector<ParamInfo> dispatchable_params) {
|
|
dispatchable_params_.swap(dispatchable_params);
|
|
std::sort(dispatchable_params_.begin(), dispatchable_params_.end(),
|
|
[](const ParamInfo& a, const ParamInfo& b) -> bool {
|
|
return a.index < b.index;
|
|
});
|
|
if (right_to_left_) {
|
|
std::reverse(dispatchable_params_.begin(), dispatchable_params_.end());
|
|
}
|
|
|
|
for (const auto& p : dispatchable_params_) {
|
|
if (p.index < 0 || p.index >= num_params_) {
|
|
PyErr_SetString(
|
|
PyExc_ValueError,
|
|
absl::StrCat("PythonAPIDispatcher: dispatchable parameter index out ",
|
|
"of range: ", p.index, " not in [0, ", num_params_, ")")
|
|
.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
PyObject* PythonAPIDispatcher::Dispatch(PyObject* params) const {
|
|
DCHECK(PyTuple_Check(params));
|
|
|
|
// TODO(b/164980194) Consider removing this check, if the caller is also
|
|
// checking/guaranteeing it (once dispatch has been integrated w/ the Python
|
|
// API handlers).
|
|
if (num_params_ != PyTuple_Size(params)) {
|
|
#if PY_MAJOR_VERSION < 3
|
|
// Python 2.x:
|
|
Safe_PyObjectPtr api_name_str(PyUnicode_AsUTF8String(api_name_.get()));
|
|
if (!api_name_str) return nullptr;
|
|
const char* api_name = PyString_AsString(api_name_str.get());
|
|
#else
|
|
// Python 3.x:
|
|
const char* api_name = PyUnicode_AsUTF8AndSize(api_name_.get(), nullptr);
|
|
#endif
|
|
PyErr_SetString(
|
|
PyExc_TypeError,
|
|
absl::StrCat(api_name ? api_name : "unknown PythonAPIDispatcher",
|
|
" expected ", num_params_, " parameters, but got ",
|
|
PyTuple_Size(params))
|
|
.c_str());
|
|
return nullptr;
|
|
}
|
|
|
|
TypeList dispatch_types = FindDispatchTypes(params, dispatchable_params_);
|
|
|
|
if (dispatch_types.empty()) {
|
|
return Py_NotImplemented;
|
|
}
|
|
|
|
if (dispatch_types.size() > 1) {
|
|
SortDispatchTypes(dispatch_types);
|
|
}
|
|
|
|
for (PyTypeObject* dispatch_type : dispatch_types) {
|
|
Safe_PyObjectPtr dispatcher =
|
|
GetAttr_TFDispatch(reinterpret_cast<PyObject*>(dispatch_type));
|
|
if (!dispatcher) return nullptr;
|
|
PyObject* result = PyObject_CallFunctionObjArgs(
|
|
dispatcher.get(), api_name_.get(), api_func_.get(), params, nullptr);
|
|
if (result != Py_NotImplemented) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return Py_NotImplemented;
|
|
}
|
|
|
|
} // namespace tensorflow
|