STT-tensorflow/tensorflow/python/framework/errors_impl.py
2020-07-20 15:30:23 -07:00

567 lines
19 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Exception types for TensorFlow errors."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import traceback
import warnings
from tensorflow.core.lib.core import error_codes_pb2
from tensorflow.python import _pywrap_py_exception_registry
from tensorflow.python.client import pywrap_tf_session as c_api
from tensorflow.python.framework import c_api_util
from tensorflow.python.framework import error_interpolation
from tensorflow.python.util import compat
from tensorflow.python.util import deprecation
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.tf_export import tf_export
def _compact_stack_trace(op):
"""Returns a traceback for `op` with common file prefixes stripped."""
compact_traces = []
common_prefix = error_interpolation.traceback_files_common_prefix([[op]])
# TODO(slebedev): switch to .filename etc once 2.X support is dropped.
for filename, lineno, name, line in op.traceback:
if filename.startswith(common_prefix):
filename = filename[len(common_prefix):]
compact_traces.append((filename, lineno, name, line))
return compact_traces
class InaccessibleTensorError(ValueError):
pass
@tf_export("errors.OperatorNotAllowedInGraphError", v1=[])
class OperatorNotAllowedInGraphError(TypeError):
"""An error is raised for unsupported operator in Graph execution.
For example, using a `tf.Tensor` as a Python `bool` in Graph execution
is not allowed.
"""
pass
@tf_export("errors.OpError", v1=["errors.OpError", "OpError"])
@deprecation.deprecated_endpoints("OpError")
class OpError(Exception):
"""A generic error that is raised when TensorFlow execution fails.
Whenever possible, the session will raise a more specific subclass
of `OpError` from the `tf.errors` module.
"""
def __init__(self, node_def, op, message, error_code):
"""Creates a new `OpError` indicating that a particular op failed.
Args:
node_def: The `node_def_pb2.NodeDef` proto representing the op that
failed, if known; otherwise None.
op: The `ops.Operation` that failed, if known; otherwise None.
message: The message string describing the failure.
error_code: The `error_codes_pb2.Code` describing the error.
"""
super(OpError, self).__init__()
self._node_def = node_def
self._op = op
self._message = message
self._error_code = error_code
def __reduce__(self):
# Allow the subclasses to accept less arguments in their __init__.
init_argspec = tf_inspect.getargspec(self.__class__.__init__)
args = tuple(getattr(self, arg) for arg in init_argspec.args[1:])
return self.__class__, args
@property
def message(self):
"""The error message that describes the error."""
return self._message
@property
def op(self):
"""The operation that failed, if known.
*N.B.* If the failed op was synthesized at runtime, e.g. a `Send`
or `Recv` op, there will be no corresponding
`tf.Operation`
object. In that case, this will return `None`, and you should
instead use the `tf.errors.OpError.node_def` to
discover information about the op.
Returns:
The `Operation` that failed, or None.
"""
return self._op
@property
def error_code(self):
"""The integer error code that describes the error."""
return self._error_code
@property
def node_def(self):
"""The `NodeDef` proto representing the op that failed."""
return self._node_def
def __str__(self):
if self._op is not None:
output = ["%s\n\nOriginal stack trace for %r:\n" % (self.message,
self._op.name,)]
curr_traceback_list = traceback.format_list(
_compact_stack_trace(self._op))
output.extend(curr_traceback_list)
# pylint: disable=protected-access
original_op = self._op._original_op
# pylint: enable=protected-access
while original_op is not None:
output.append(
"\n...which was originally created as op %r, defined at:\n"
% (original_op.name,))
prev_traceback_list = curr_traceback_list
curr_traceback_list = traceback.format_list(
_compact_stack_trace(original_op))
# Attempt to elide large common subsequences of the subsequent
# stack traces.
#
# TODO(mrry): Consider computing the actual longest common subsequence.
is_eliding = False
elide_count = 0
last_elided_line = None
for line, line_in_prev in zip(curr_traceback_list, prev_traceback_list):
if line == line_in_prev:
if is_eliding:
elide_count += 1
last_elided_line = line
else:
output.append(line)
is_eliding = True
elide_count = 0
else:
if is_eliding:
if elide_count > 0:
output.extend(
["[elided %d identical lines from previous traceback]\n"
% (elide_count - 1,), last_elided_line])
is_eliding = False
output.extend(line)
# pylint: disable=protected-access
original_op = original_op._original_op
# pylint: enable=protected-access
return "".join(output)
else:
return self.message
OK = error_codes_pb2.OK
tf_export("errors.OK").export_constant(__name__, "OK")
CANCELLED = error_codes_pb2.CANCELLED
tf_export("errors.CANCELLED").export_constant(__name__, "CANCELLED")
UNKNOWN = error_codes_pb2.UNKNOWN
tf_export("errors.UNKNOWN").export_constant(__name__, "UNKNOWN")
INVALID_ARGUMENT = error_codes_pb2.INVALID_ARGUMENT
tf_export("errors.INVALID_ARGUMENT").export_constant(__name__,
"INVALID_ARGUMENT")
DEADLINE_EXCEEDED = error_codes_pb2.DEADLINE_EXCEEDED
tf_export("errors.DEADLINE_EXCEEDED").export_constant(__name__,
"DEADLINE_EXCEEDED")
NOT_FOUND = error_codes_pb2.NOT_FOUND
tf_export("errors.NOT_FOUND").export_constant(__name__, "NOT_FOUND")
ALREADY_EXISTS = error_codes_pb2.ALREADY_EXISTS
tf_export("errors.ALREADY_EXISTS").export_constant(__name__, "ALREADY_EXISTS")
PERMISSION_DENIED = error_codes_pb2.PERMISSION_DENIED
tf_export("errors.PERMISSION_DENIED").export_constant(__name__,
"PERMISSION_DENIED")
UNAUTHENTICATED = error_codes_pb2.UNAUTHENTICATED
tf_export("errors.UNAUTHENTICATED").export_constant(__name__, "UNAUTHENTICATED")
RESOURCE_EXHAUSTED = error_codes_pb2.RESOURCE_EXHAUSTED
tf_export("errors.RESOURCE_EXHAUSTED").export_constant(__name__,
"RESOURCE_EXHAUSTED")
FAILED_PRECONDITION = error_codes_pb2.FAILED_PRECONDITION
tf_export("errors.FAILED_PRECONDITION").export_constant(__name__,
"FAILED_PRECONDITION")
ABORTED = error_codes_pb2.ABORTED
tf_export("errors.ABORTED").export_constant(__name__, "ABORTED")
OUT_OF_RANGE = error_codes_pb2.OUT_OF_RANGE
tf_export("errors.OUT_OF_RANGE").export_constant(__name__, "OUT_OF_RANGE")
UNIMPLEMENTED = error_codes_pb2.UNIMPLEMENTED
tf_export("errors.UNIMPLEMENTED").export_constant(__name__, "UNIMPLEMENTED")
INTERNAL = error_codes_pb2.INTERNAL
tf_export("errors.INTERNAL").export_constant(__name__, "INTERNAL")
UNAVAILABLE = error_codes_pb2.UNAVAILABLE
tf_export("errors.UNAVAILABLE").export_constant(__name__, "UNAVAILABLE")
DATA_LOSS = error_codes_pb2.DATA_LOSS
tf_export("errors.DATA_LOSS").export_constant(__name__, "DATA_LOSS")
# pylint: disable=line-too-long
@tf_export("errors.CancelledError")
class CancelledError(OpError):
"""Raised when an operation or step is cancelled.
For example, a long-running operation (e.g.
`tf.QueueBase.enqueue` may be
cancelled by running another operation (e.g.
`tf.QueueBase.close`,
or by `tf.Session.close`.
A step that is running such a long-running operation will fail by raising
`CancelledError`.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates a `CancelledError`."""
super(CancelledError, self).__init__(node_def, op, message, CANCELLED)
# pylint: enable=line-too-long
@tf_export("errors.UnknownError")
class UnknownError(OpError):
"""Unknown error.
An example of where this error may be returned is if a Status value
received from another address space belongs to an error-space that
is not known to this address space. Also, errors raised by APIs that
do not return enough error information may be converted to this
error.
@@__init__
"""
def __init__(self, node_def, op, message, error_code=UNKNOWN):
"""Creates an `UnknownError`."""
super(UnknownError, self).__init__(node_def, op, message, error_code)
@tf_export("errors.InvalidArgumentError")
class InvalidArgumentError(OpError):
"""Raised when an operation receives an invalid argument.
This may occur, for example, if an operation receives an input
tensor that has an invalid value or shape. For example, the
`tf.matmul` op will raise this
error if it receives an input that is not a matrix, and the
`tf.reshape` op will raise
this error if the new shape does not match the number of elements in the input
tensor.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `InvalidArgumentError`."""
super(InvalidArgumentError, self).__init__(node_def, op, message,
INVALID_ARGUMENT)
@tf_export("errors.DeadlineExceededError")
class DeadlineExceededError(OpError):
"""Raised when a deadline expires before an operation could complete.
This exception is not currently used.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates a `DeadlineExceededError`."""
super(DeadlineExceededError, self).__init__(node_def, op, message,
DEADLINE_EXCEEDED)
@tf_export("errors.NotFoundError")
class NotFoundError(OpError):
"""Raised when a requested entity (e.g., a file or directory) was not found.
For example, running the
`tf.WholeFileReader.read`
operation could raise `NotFoundError` if it receives the name of a file that
does not exist.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates a `NotFoundError`."""
super(NotFoundError, self).__init__(node_def, op, message, NOT_FOUND)
@tf_export("errors.AlreadyExistsError")
class AlreadyExistsError(OpError):
"""Raised when an entity that we attempted to create already exists.
For example, running an operation that saves a file
(e.g. `tf.train.Saver.save`)
could potentially raise this exception if an explicit filename for an
existing file was passed.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `AlreadyExistsError`."""
super(AlreadyExistsError, self).__init__(node_def, op, message,
ALREADY_EXISTS)
@tf_export("errors.PermissionDeniedError")
class PermissionDeniedError(OpError):
"""Raised when the caller does not have permission to run an operation.
For example, running the
`tf.WholeFileReader.read`
operation could raise `PermissionDeniedError` if it receives the name of a
file for which the user does not have the read file permission.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates a `PermissionDeniedError`."""
super(PermissionDeniedError, self).__init__(node_def, op, message,
PERMISSION_DENIED)
@tf_export("errors.UnauthenticatedError")
class UnauthenticatedError(OpError):
"""The request does not have valid authentication credentials.
This exception is not currently used.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `UnauthenticatedError`."""
super(UnauthenticatedError, self).__init__(node_def, op, message,
UNAUTHENTICATED)
@tf_export("errors.ResourceExhaustedError")
class ResourceExhaustedError(OpError):
"""Some resource has been exhausted.
For example, this error might be raised if a per-user quota is
exhausted, or perhaps the entire file system is out of space.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates a `ResourceExhaustedError`."""
super(ResourceExhaustedError, self).__init__(node_def, op, message,
RESOURCE_EXHAUSTED)
@tf_export("errors.FailedPreconditionError")
class FailedPreconditionError(OpError):
"""Operation was rejected because the system is not in a state to execute it.
This exception is most commonly raised when running an operation
that reads a `tf.Variable`
before it has been initialized.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates a `FailedPreconditionError`."""
super(FailedPreconditionError, self).__init__(node_def, op, message,
FAILED_PRECONDITION)
@tf_export("errors.AbortedError")
class AbortedError(OpError):
"""The operation was aborted, typically due to a concurrent action.
For example, running a
`tf.QueueBase.enqueue`
operation may raise `AbortedError` if a
`tf.QueueBase.close` operation
previously ran.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `AbortedError`."""
super(AbortedError, self).__init__(node_def, op, message, ABORTED)
@tf_export("errors.OutOfRangeError")
class OutOfRangeError(OpError):
"""Raised when an operation iterates past the valid input range.
This exception is raised in "end-of-file" conditions, such as when a
`tf.QueueBase.dequeue`
operation is blocked on an empty queue, and a
`tf.QueueBase.close`
operation executes.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `OutOfRangeError`."""
super(OutOfRangeError, self).__init__(node_def, op, message,
OUT_OF_RANGE)
@tf_export("errors.UnimplementedError")
class UnimplementedError(OpError):
"""Raised when an operation has not been implemented.
Some operations may raise this error when passed otherwise-valid
arguments that it does not currently support. For example, running
the `tf.nn.max_pool2d` operation
would raise this error if pooling was requested on the batch dimension,
because this is not yet supported.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `UnimplementedError`."""
super(UnimplementedError, self).__init__(node_def, op, message,
UNIMPLEMENTED)
@tf_export("errors.InternalError")
class InternalError(OpError):
"""Raised when the system experiences an internal error.
This exception is raised when some invariant expected by the runtime
has been broken. Catching this exception is not recommended.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `InternalError`."""
super(InternalError, self).__init__(node_def, op, message, INTERNAL)
@tf_export("errors.UnavailableError")
class UnavailableError(OpError):
"""Raised when the runtime is currently unavailable.
This exception is not currently used.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates an `UnavailableError`."""
super(UnavailableError, self).__init__(node_def, op, message,
UNAVAILABLE)
@tf_export("errors.DataLossError")
class DataLossError(OpError):
"""Raised when unrecoverable data loss or corruption is encountered.
For example, this may be raised by running a
`tf.WholeFileReader.read`
operation, if the file is truncated while it is being read.
@@__init__
"""
def __init__(self, node_def, op, message):
"""Creates a `DataLossError`."""
super(DataLossError, self).__init__(node_def, op, message, DATA_LOSS)
_CODE_TO_EXCEPTION_CLASS = {
CANCELLED: CancelledError,
UNKNOWN: UnknownError,
INVALID_ARGUMENT: InvalidArgumentError,
DEADLINE_EXCEEDED: DeadlineExceededError,
NOT_FOUND: NotFoundError,
ALREADY_EXISTS: AlreadyExistsError,
PERMISSION_DENIED: PermissionDeniedError,
UNAUTHENTICATED: UnauthenticatedError,
RESOURCE_EXHAUSTED: ResourceExhaustedError,
FAILED_PRECONDITION: FailedPreconditionError,
ABORTED: AbortedError,
OUT_OF_RANGE: OutOfRangeError,
UNIMPLEMENTED: UnimplementedError,
INTERNAL: InternalError,
UNAVAILABLE: UnavailableError,
DATA_LOSS: DataLossError,
}
_pywrap_py_exception_registry.PyExceptionRegistry_Init(_CODE_TO_EXCEPTION_CLASS)
_EXCEPTION_CLASS_TO_CODE = {
class_: code for code, class_ in _CODE_TO_EXCEPTION_CLASS.items()}
@tf_export(v1=["errors.exception_type_from_error_code"])
def exception_type_from_error_code(error_code):
return _CODE_TO_EXCEPTION_CLASS[error_code]
@tf_export(v1=["errors.error_code_from_exception_type"])
def error_code_from_exception_type(cls):
try:
return _EXCEPTION_CLASS_TO_CODE[cls]
except KeyError:
warnings.warn("Unknown class exception")
return UnknownError(None, None, "Unknown class exception", None)
def _make_specific_exception(node_def, op, message, error_code):
try:
exc_type = exception_type_from_error_code(error_code)
return exc_type(node_def, op, message)
except KeyError:
warnings.warn("Unknown error code: %d" % error_code)
return UnknownError(node_def, op, message, error_code)
# Named like a function for backwards compatibility with the
# @tf_contextlib.contextmanager version, which was switched to a class to avoid
# some object creation overhead.
# TODO(b/77295559): expand use of TF_Status* SWIG typemap and deprecate this.
@tf_export(v1=["errors.raise_exception_on_not_ok_status"]) # pylint: disable=invalid-name
class raise_exception_on_not_ok_status(object):
"""Context manager to check for C API status."""
def __enter__(self):
self.status = c_api_util.ScopedTFStatus()
return self.status.status
def __exit__(self, type_arg, value_arg, traceback_arg):
try:
if c_api.TF_GetCode(self.status.status) != 0:
raise _make_specific_exception(
None, None,
compat.as_text(c_api.TF_Message(self.status.status)),
c_api.TF_GetCode(self.status.status))
# Delete the underlying status object from memory otherwise it stays alive
# as there is a reference to status from this from the traceback due to
# raise.
finally:
del self.status
return False # False values do not suppress exceptions