567 lines
19 KiB
Python
567 lines
19 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Exception types for TensorFlow errors."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import traceback
|
|
import warnings
|
|
|
|
from tensorflow.core.lib.core import error_codes_pb2
|
|
from tensorflow.python import _pywrap_py_exception_registry
|
|
from tensorflow.python.client import pywrap_tf_session as c_api
|
|
from tensorflow.python.framework import c_api_util
|
|
from tensorflow.python.framework import error_interpolation
|
|
from tensorflow.python.util import compat
|
|
from tensorflow.python.util import deprecation
|
|
from tensorflow.python.util import tf_inspect
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
|
|
def _compact_stack_trace(op):
|
|
"""Returns a traceback for `op` with common file prefixes stripped."""
|
|
compact_traces = []
|
|
common_prefix = error_interpolation.traceback_files_common_prefix([[op]])
|
|
# TODO(slebedev): switch to .filename etc once 2.X support is dropped.
|
|
for filename, lineno, name, line in op.traceback:
|
|
if filename.startswith(common_prefix):
|
|
filename = filename[len(common_prefix):]
|
|
compact_traces.append((filename, lineno, name, line))
|
|
return compact_traces
|
|
|
|
|
|
class InaccessibleTensorError(ValueError):
|
|
pass
|
|
|
|
|
|
@tf_export("errors.OperatorNotAllowedInGraphError", v1=[])
|
|
class OperatorNotAllowedInGraphError(TypeError):
|
|
"""An error is raised for unsupported operator in Graph execution.
|
|
|
|
For example, using a `tf.Tensor` as a Python `bool` in Graph execution
|
|
is not allowed.
|
|
"""
|
|
pass
|
|
|
|
|
|
@tf_export("errors.OpError", v1=["errors.OpError", "OpError"])
|
|
@deprecation.deprecated_endpoints("OpError")
|
|
class OpError(Exception):
|
|
"""A generic error that is raised when TensorFlow execution fails.
|
|
|
|
Whenever possible, the session will raise a more specific subclass
|
|
of `OpError` from the `tf.errors` module.
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message, error_code):
|
|
"""Creates a new `OpError` indicating that a particular op failed.
|
|
|
|
Args:
|
|
node_def: The `node_def_pb2.NodeDef` proto representing the op that
|
|
failed, if known; otherwise None.
|
|
op: The `ops.Operation` that failed, if known; otherwise None.
|
|
message: The message string describing the failure.
|
|
error_code: The `error_codes_pb2.Code` describing the error.
|
|
"""
|
|
super(OpError, self).__init__()
|
|
self._node_def = node_def
|
|
self._op = op
|
|
self._message = message
|
|
self._error_code = error_code
|
|
|
|
def __reduce__(self):
|
|
# Allow the subclasses to accept less arguments in their __init__.
|
|
init_argspec = tf_inspect.getargspec(self.__class__.__init__)
|
|
args = tuple(getattr(self, arg) for arg in init_argspec.args[1:])
|
|
return self.__class__, args
|
|
|
|
@property
|
|
def message(self):
|
|
"""The error message that describes the error."""
|
|
return self._message
|
|
|
|
@property
|
|
def op(self):
|
|
"""The operation that failed, if known.
|
|
|
|
*N.B.* If the failed op was synthesized at runtime, e.g. a `Send`
|
|
or `Recv` op, there will be no corresponding
|
|
`tf.Operation`
|
|
object. In that case, this will return `None`, and you should
|
|
instead use the `tf.errors.OpError.node_def` to
|
|
discover information about the op.
|
|
|
|
Returns:
|
|
The `Operation` that failed, or None.
|
|
"""
|
|
return self._op
|
|
|
|
@property
|
|
def error_code(self):
|
|
"""The integer error code that describes the error."""
|
|
return self._error_code
|
|
|
|
@property
|
|
def node_def(self):
|
|
"""The `NodeDef` proto representing the op that failed."""
|
|
return self._node_def
|
|
|
|
def __str__(self):
|
|
if self._op is not None:
|
|
output = ["%s\n\nOriginal stack trace for %r:\n" % (self.message,
|
|
self._op.name,)]
|
|
curr_traceback_list = traceback.format_list(
|
|
_compact_stack_trace(self._op))
|
|
output.extend(curr_traceback_list)
|
|
# pylint: disable=protected-access
|
|
original_op = self._op._original_op
|
|
# pylint: enable=protected-access
|
|
while original_op is not None:
|
|
output.append(
|
|
"\n...which was originally created as op %r, defined at:\n"
|
|
% (original_op.name,))
|
|
prev_traceback_list = curr_traceback_list
|
|
curr_traceback_list = traceback.format_list(
|
|
_compact_stack_trace(original_op))
|
|
|
|
# Attempt to elide large common subsequences of the subsequent
|
|
# stack traces.
|
|
#
|
|
# TODO(mrry): Consider computing the actual longest common subsequence.
|
|
is_eliding = False
|
|
elide_count = 0
|
|
last_elided_line = None
|
|
for line, line_in_prev in zip(curr_traceback_list, prev_traceback_list):
|
|
if line == line_in_prev:
|
|
if is_eliding:
|
|
elide_count += 1
|
|
last_elided_line = line
|
|
else:
|
|
output.append(line)
|
|
is_eliding = True
|
|
elide_count = 0
|
|
else:
|
|
if is_eliding:
|
|
if elide_count > 0:
|
|
output.extend(
|
|
["[elided %d identical lines from previous traceback]\n"
|
|
% (elide_count - 1,), last_elided_line])
|
|
is_eliding = False
|
|
output.extend(line)
|
|
|
|
# pylint: disable=protected-access
|
|
original_op = original_op._original_op
|
|
# pylint: enable=protected-access
|
|
return "".join(output)
|
|
else:
|
|
return self.message
|
|
|
|
|
|
OK = error_codes_pb2.OK
|
|
tf_export("errors.OK").export_constant(__name__, "OK")
|
|
CANCELLED = error_codes_pb2.CANCELLED
|
|
tf_export("errors.CANCELLED").export_constant(__name__, "CANCELLED")
|
|
UNKNOWN = error_codes_pb2.UNKNOWN
|
|
tf_export("errors.UNKNOWN").export_constant(__name__, "UNKNOWN")
|
|
INVALID_ARGUMENT = error_codes_pb2.INVALID_ARGUMENT
|
|
tf_export("errors.INVALID_ARGUMENT").export_constant(__name__,
|
|
"INVALID_ARGUMENT")
|
|
DEADLINE_EXCEEDED = error_codes_pb2.DEADLINE_EXCEEDED
|
|
tf_export("errors.DEADLINE_EXCEEDED").export_constant(__name__,
|
|
"DEADLINE_EXCEEDED")
|
|
NOT_FOUND = error_codes_pb2.NOT_FOUND
|
|
tf_export("errors.NOT_FOUND").export_constant(__name__, "NOT_FOUND")
|
|
ALREADY_EXISTS = error_codes_pb2.ALREADY_EXISTS
|
|
tf_export("errors.ALREADY_EXISTS").export_constant(__name__, "ALREADY_EXISTS")
|
|
PERMISSION_DENIED = error_codes_pb2.PERMISSION_DENIED
|
|
tf_export("errors.PERMISSION_DENIED").export_constant(__name__,
|
|
"PERMISSION_DENIED")
|
|
UNAUTHENTICATED = error_codes_pb2.UNAUTHENTICATED
|
|
tf_export("errors.UNAUTHENTICATED").export_constant(__name__, "UNAUTHENTICATED")
|
|
RESOURCE_EXHAUSTED = error_codes_pb2.RESOURCE_EXHAUSTED
|
|
tf_export("errors.RESOURCE_EXHAUSTED").export_constant(__name__,
|
|
"RESOURCE_EXHAUSTED")
|
|
FAILED_PRECONDITION = error_codes_pb2.FAILED_PRECONDITION
|
|
tf_export("errors.FAILED_PRECONDITION").export_constant(__name__,
|
|
"FAILED_PRECONDITION")
|
|
ABORTED = error_codes_pb2.ABORTED
|
|
tf_export("errors.ABORTED").export_constant(__name__, "ABORTED")
|
|
OUT_OF_RANGE = error_codes_pb2.OUT_OF_RANGE
|
|
tf_export("errors.OUT_OF_RANGE").export_constant(__name__, "OUT_OF_RANGE")
|
|
UNIMPLEMENTED = error_codes_pb2.UNIMPLEMENTED
|
|
tf_export("errors.UNIMPLEMENTED").export_constant(__name__, "UNIMPLEMENTED")
|
|
INTERNAL = error_codes_pb2.INTERNAL
|
|
tf_export("errors.INTERNAL").export_constant(__name__, "INTERNAL")
|
|
UNAVAILABLE = error_codes_pb2.UNAVAILABLE
|
|
tf_export("errors.UNAVAILABLE").export_constant(__name__, "UNAVAILABLE")
|
|
DATA_LOSS = error_codes_pb2.DATA_LOSS
|
|
tf_export("errors.DATA_LOSS").export_constant(__name__, "DATA_LOSS")
|
|
|
|
|
|
# pylint: disable=line-too-long
|
|
@tf_export("errors.CancelledError")
|
|
class CancelledError(OpError):
|
|
"""Raised when an operation or step is cancelled.
|
|
|
|
For example, a long-running operation (e.g.
|
|
`tf.QueueBase.enqueue` may be
|
|
cancelled by running another operation (e.g.
|
|
`tf.QueueBase.close`,
|
|
or by `tf.Session.close`.
|
|
A step that is running such a long-running operation will fail by raising
|
|
`CancelledError`.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates a `CancelledError`."""
|
|
super(CancelledError, self).__init__(node_def, op, message, CANCELLED)
|
|
# pylint: enable=line-too-long
|
|
|
|
|
|
@tf_export("errors.UnknownError")
|
|
class UnknownError(OpError):
|
|
"""Unknown error.
|
|
|
|
An example of where this error may be returned is if a Status value
|
|
received from another address space belongs to an error-space that
|
|
is not known to this address space. Also, errors raised by APIs that
|
|
do not return enough error information may be converted to this
|
|
error.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message, error_code=UNKNOWN):
|
|
"""Creates an `UnknownError`."""
|
|
super(UnknownError, self).__init__(node_def, op, message, error_code)
|
|
|
|
|
|
@tf_export("errors.InvalidArgumentError")
|
|
class InvalidArgumentError(OpError):
|
|
"""Raised when an operation receives an invalid argument.
|
|
|
|
This may occur, for example, if an operation receives an input
|
|
tensor that has an invalid value or shape. For example, the
|
|
`tf.matmul` op will raise this
|
|
error if it receives an input that is not a matrix, and the
|
|
`tf.reshape` op will raise
|
|
this error if the new shape does not match the number of elements in the input
|
|
tensor.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `InvalidArgumentError`."""
|
|
super(InvalidArgumentError, self).__init__(node_def, op, message,
|
|
INVALID_ARGUMENT)
|
|
|
|
|
|
@tf_export("errors.DeadlineExceededError")
|
|
class DeadlineExceededError(OpError):
|
|
"""Raised when a deadline expires before an operation could complete.
|
|
|
|
This exception is not currently used.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates a `DeadlineExceededError`."""
|
|
super(DeadlineExceededError, self).__init__(node_def, op, message,
|
|
DEADLINE_EXCEEDED)
|
|
|
|
|
|
@tf_export("errors.NotFoundError")
|
|
class NotFoundError(OpError):
|
|
"""Raised when a requested entity (e.g., a file or directory) was not found.
|
|
|
|
For example, running the
|
|
`tf.WholeFileReader.read`
|
|
operation could raise `NotFoundError` if it receives the name of a file that
|
|
does not exist.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates a `NotFoundError`."""
|
|
super(NotFoundError, self).__init__(node_def, op, message, NOT_FOUND)
|
|
|
|
|
|
@tf_export("errors.AlreadyExistsError")
|
|
class AlreadyExistsError(OpError):
|
|
"""Raised when an entity that we attempted to create already exists.
|
|
|
|
For example, running an operation that saves a file
|
|
(e.g. `tf.train.Saver.save`)
|
|
could potentially raise this exception if an explicit filename for an
|
|
existing file was passed.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `AlreadyExistsError`."""
|
|
super(AlreadyExistsError, self).__init__(node_def, op, message,
|
|
ALREADY_EXISTS)
|
|
|
|
|
|
@tf_export("errors.PermissionDeniedError")
|
|
class PermissionDeniedError(OpError):
|
|
"""Raised when the caller does not have permission to run an operation.
|
|
|
|
For example, running the
|
|
`tf.WholeFileReader.read`
|
|
operation could raise `PermissionDeniedError` if it receives the name of a
|
|
file for which the user does not have the read file permission.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates a `PermissionDeniedError`."""
|
|
super(PermissionDeniedError, self).__init__(node_def, op, message,
|
|
PERMISSION_DENIED)
|
|
|
|
|
|
@tf_export("errors.UnauthenticatedError")
|
|
class UnauthenticatedError(OpError):
|
|
"""The request does not have valid authentication credentials.
|
|
|
|
This exception is not currently used.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `UnauthenticatedError`."""
|
|
super(UnauthenticatedError, self).__init__(node_def, op, message,
|
|
UNAUTHENTICATED)
|
|
|
|
|
|
@tf_export("errors.ResourceExhaustedError")
|
|
class ResourceExhaustedError(OpError):
|
|
"""Some resource has been exhausted.
|
|
|
|
For example, this error might be raised if a per-user quota is
|
|
exhausted, or perhaps the entire file system is out of space.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates a `ResourceExhaustedError`."""
|
|
super(ResourceExhaustedError, self).__init__(node_def, op, message,
|
|
RESOURCE_EXHAUSTED)
|
|
|
|
|
|
@tf_export("errors.FailedPreconditionError")
|
|
class FailedPreconditionError(OpError):
|
|
"""Operation was rejected because the system is not in a state to execute it.
|
|
|
|
This exception is most commonly raised when running an operation
|
|
that reads a `tf.Variable`
|
|
before it has been initialized.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates a `FailedPreconditionError`."""
|
|
super(FailedPreconditionError, self).__init__(node_def, op, message,
|
|
FAILED_PRECONDITION)
|
|
|
|
|
|
@tf_export("errors.AbortedError")
|
|
class AbortedError(OpError):
|
|
"""The operation was aborted, typically due to a concurrent action.
|
|
|
|
For example, running a
|
|
`tf.QueueBase.enqueue`
|
|
operation may raise `AbortedError` if a
|
|
`tf.QueueBase.close` operation
|
|
previously ran.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `AbortedError`."""
|
|
super(AbortedError, self).__init__(node_def, op, message, ABORTED)
|
|
|
|
|
|
@tf_export("errors.OutOfRangeError")
|
|
class OutOfRangeError(OpError):
|
|
"""Raised when an operation iterates past the valid input range.
|
|
|
|
This exception is raised in "end-of-file" conditions, such as when a
|
|
`tf.QueueBase.dequeue`
|
|
operation is blocked on an empty queue, and a
|
|
`tf.QueueBase.close`
|
|
operation executes.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `OutOfRangeError`."""
|
|
super(OutOfRangeError, self).__init__(node_def, op, message,
|
|
OUT_OF_RANGE)
|
|
|
|
|
|
@tf_export("errors.UnimplementedError")
|
|
class UnimplementedError(OpError):
|
|
"""Raised when an operation has not been implemented.
|
|
|
|
Some operations may raise this error when passed otherwise-valid
|
|
arguments that it does not currently support. For example, running
|
|
the `tf.nn.max_pool2d` operation
|
|
would raise this error if pooling was requested on the batch dimension,
|
|
because this is not yet supported.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `UnimplementedError`."""
|
|
super(UnimplementedError, self).__init__(node_def, op, message,
|
|
UNIMPLEMENTED)
|
|
|
|
|
|
@tf_export("errors.InternalError")
|
|
class InternalError(OpError):
|
|
"""Raised when the system experiences an internal error.
|
|
|
|
This exception is raised when some invariant expected by the runtime
|
|
has been broken. Catching this exception is not recommended.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `InternalError`."""
|
|
super(InternalError, self).__init__(node_def, op, message, INTERNAL)
|
|
|
|
|
|
@tf_export("errors.UnavailableError")
|
|
class UnavailableError(OpError):
|
|
"""Raised when the runtime is currently unavailable.
|
|
|
|
This exception is not currently used.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates an `UnavailableError`."""
|
|
super(UnavailableError, self).__init__(node_def, op, message,
|
|
UNAVAILABLE)
|
|
|
|
|
|
@tf_export("errors.DataLossError")
|
|
class DataLossError(OpError):
|
|
"""Raised when unrecoverable data loss or corruption is encountered.
|
|
|
|
For example, this may be raised by running a
|
|
`tf.WholeFileReader.read`
|
|
operation, if the file is truncated while it is being read.
|
|
|
|
@@__init__
|
|
"""
|
|
|
|
def __init__(self, node_def, op, message):
|
|
"""Creates a `DataLossError`."""
|
|
super(DataLossError, self).__init__(node_def, op, message, DATA_LOSS)
|
|
|
|
|
|
_CODE_TO_EXCEPTION_CLASS = {
|
|
CANCELLED: CancelledError,
|
|
UNKNOWN: UnknownError,
|
|
INVALID_ARGUMENT: InvalidArgumentError,
|
|
DEADLINE_EXCEEDED: DeadlineExceededError,
|
|
NOT_FOUND: NotFoundError,
|
|
ALREADY_EXISTS: AlreadyExistsError,
|
|
PERMISSION_DENIED: PermissionDeniedError,
|
|
UNAUTHENTICATED: UnauthenticatedError,
|
|
RESOURCE_EXHAUSTED: ResourceExhaustedError,
|
|
FAILED_PRECONDITION: FailedPreconditionError,
|
|
ABORTED: AbortedError,
|
|
OUT_OF_RANGE: OutOfRangeError,
|
|
UNIMPLEMENTED: UnimplementedError,
|
|
INTERNAL: InternalError,
|
|
UNAVAILABLE: UnavailableError,
|
|
DATA_LOSS: DataLossError,
|
|
}
|
|
|
|
_pywrap_py_exception_registry.PyExceptionRegistry_Init(_CODE_TO_EXCEPTION_CLASS)
|
|
|
|
_EXCEPTION_CLASS_TO_CODE = {
|
|
class_: code for code, class_ in _CODE_TO_EXCEPTION_CLASS.items()}
|
|
|
|
|
|
@tf_export(v1=["errors.exception_type_from_error_code"])
|
|
def exception_type_from_error_code(error_code):
|
|
return _CODE_TO_EXCEPTION_CLASS[error_code]
|
|
|
|
|
|
@tf_export(v1=["errors.error_code_from_exception_type"])
|
|
def error_code_from_exception_type(cls):
|
|
try:
|
|
return _EXCEPTION_CLASS_TO_CODE[cls]
|
|
except KeyError:
|
|
warnings.warn("Unknown class exception")
|
|
return UnknownError(None, None, "Unknown class exception", None)
|
|
|
|
|
|
def _make_specific_exception(node_def, op, message, error_code):
|
|
try:
|
|
exc_type = exception_type_from_error_code(error_code)
|
|
return exc_type(node_def, op, message)
|
|
except KeyError:
|
|
warnings.warn("Unknown error code: %d" % error_code)
|
|
return UnknownError(node_def, op, message, error_code)
|
|
|
|
|
|
# Named like a function for backwards compatibility with the
|
|
# @tf_contextlib.contextmanager version, which was switched to a class to avoid
|
|
# some object creation overhead.
|
|
# TODO(b/77295559): expand use of TF_Status* SWIG typemap and deprecate this.
|
|
@tf_export(v1=["errors.raise_exception_on_not_ok_status"]) # pylint: disable=invalid-name
|
|
class raise_exception_on_not_ok_status(object):
|
|
"""Context manager to check for C API status."""
|
|
|
|
def __enter__(self):
|
|
self.status = c_api_util.ScopedTFStatus()
|
|
return self.status.status
|
|
|
|
def __exit__(self, type_arg, value_arg, traceback_arg):
|
|
try:
|
|
if c_api.TF_GetCode(self.status.status) != 0:
|
|
raise _make_specific_exception(
|
|
None, None,
|
|
compat.as_text(c_api.TF_Message(self.status.status)),
|
|
c_api.TF_GetCode(self.status.status))
|
|
# Delete the underlying status object from memory otherwise it stays alive
|
|
# as there is a reference to status from this from the traceback due to
|
|
# raise.
|
|
finally:
|
|
del self.status
|
|
return False # False values do not suppress exceptions
|