STT-tensorflow/tensorflow/python/distribute/distribution_strategy_context.py
Ran Chen 427df02dbb Generate replica_id tensor at call time
Keeping Tensors as states doesn't work well with nested tf.function. It's
possible that the Tensor is generated one func graph, and gets capture by other
func graphs, which results an error that "an op
outside of the function building code is being passed a Graph tensor".

e.g.

@tf.function
def f():
  ...
  strategy.run(g)
  ...

@tf.function
def g():
  ...
  do_something(get_replica_context().replica_id_in_sync_group)
  ...

Note that f() and g() may be traced multiple times, i.e. g() may capture the
tensor from an ephemeral trace of f().

PiperOrigin-RevId: 323490593
Change-Id: I230fd036aaf05cfbd7c8bb7898921b83d2731e7d
2020-07-27 19:21:33 -07:00

356 lines
11 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility to get tf.distribute.Strategy related contexts."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import threading
from tensorflow.python import tf2
from tensorflow.python.framework import ops
from tensorflow.python.util.lazy_loader import LazyLoader
from tensorflow.python.util.tf_export import tf_export
# There is a circular dependency between this and the `distribute_lib` module.
# So we load it lazily to work around this.
distribute_lib = LazyLoader(
"distribute_lib", globals(),
"tensorflow.python.distribute.distribute_lib")
# ------------------------------------------------------------------------------
# Internal API for setting the current thread mode as being either in a
# replica or cross-replica context for a particular tf.distribute.Strategy.
class _ThreadMode(object):
def __init__(self, dist, cross, replica):
self.strategy = dist
self.cross_replica_context = cross
self.replica_context = replica
class _CrossReplicaThreadMode(_ThreadMode):
def __init__(self, strategy):
_ThreadMode.__init__(self, strategy, strategy, None)
class _InReplicaThreadMode(_ThreadMode):
def __init__(self, replica_ctx):
_ThreadMode.__init__(self, replica_ctx.strategy, None, replica_ctx)
def _push_per_thread_mode(context):
ops.get_default_graph()._distribution_strategy_stack.append(context) # pylint: disable=protected-access
def _pop_per_thread_mode():
ops.get_default_graph()._distribution_strategy_stack.pop(-1) # pylint: disable=protected-access
class _DefaultReplicaThreadMode(_ThreadMode):
"""Type of default value returned by `_get_per_thread_mode()`.
Used when the thread-local stack is empty.
"""
def __init__(self):
_ThreadMode.__init__(self, _get_default_strategy(), None,
_get_default_replica_context())
def _get_per_thread_mode():
try:
return ops.get_default_graph()._distribution_strategy_stack[-1] # pylint: disable=protected-access
except (AttributeError, IndexError):
return _get_default_replica_mode()
# ------------------------------------------------------------------------------
# Public API for accessing the current thread mode
@tf_export("distribute.get_replica_context")
def get_replica_context():
"""Returns the current `tf.distribute.ReplicaContext` or `None`.
Returns `None` if in a cross-replica context.
Note that execution:
1. starts in the default (single-replica) replica context (this function
will return the default `ReplicaContext` object);
2. switches to cross-replica context (in which case this will return
`None`) when entering a `with tf.distribute.Strategy.scope():` block;
3. switches to a (non-default) replica context inside `strategy.run(fn, ...)`;
4. if `fn` calls `get_replica_context().merge_call(merge_fn, ...)`, then
inside `merge_fn` you are back in the cross-replica context (and again
this function will return `None`).
Most `tf.distribute.Strategy` methods may only be executed in
a cross-replica context, in a replica context you should use the
API of the `tf.distribute.ReplicaContext` object returned by this
method instead.
```
assert tf.distribute.get_replica_context() is not None # default
with strategy.scope():
assert tf.distribute.get_replica_context() is None
def f():
replica_context = tf.distribute.get_replica_context() # for strategy
assert replica_context is not None
tf.print("Replica id: ", replica_context.replica_id_in_sync_group,
" of ", replica_context.num_replicas_in_sync)
strategy.run(f)
```
Returns:
The current `tf.distribute.ReplicaContext` object when in a replica context
scope, else `None`.
Within a particular block, exactly one of these two things will be true:
* `get_replica_context()` returns non-`None`, or
* `tf.distribute.is_cross_replica_context()` returns True.
"""
return _get_per_thread_mode().replica_context
def get_cross_replica_context():
"""Returns the current tf.distribute.Strategy if in a cross-replica context.
DEPRECATED: Please use `in_cross_replica_context()` and
`get_strategy()` instead.
Returns:
Returns the current `tf.distribute.Strategy` object in a cross-replica
context, or `None`.
Exactly one of `get_replica_context()` and `get_cross_replica_context()`
will return `None` in a particular block.
"""
return _get_per_thread_mode().cross_replica_context
@tf_export("distribute.in_cross_replica_context")
def in_cross_replica_context():
"""Returns `True` if in a cross-replica context.
See `tf.distribute.get_replica_context` for details.
```
assert not tf.distribute.in_cross_replica_context()
with strategy.scope():
assert tf.distribute.in_cross_replica_context()
def f():
assert not tf.distribute.in_cross_replica_context()
strategy.run(f)
```
Returns:
`True` if in a cross-replica context (`get_replica_context()` returns
`None`), or `False` if in a replica context (`get_replica_context()` returns
non-`None`).
"""
return _get_per_thread_mode().cross_replica_context is not None
@tf_export("distribute.get_strategy")
def get_strategy():
"""Returns the current `tf.distribute.Strategy` object.
Typically only used in a cross-replica context:
```
if tf.distribute.in_cross_replica_context():
strategy = tf.distribute.get_strategy()
...
```
Returns:
A `tf.distribute.Strategy` object. Inside a `with strategy.scope()` block,
it returns `strategy`, otherwise it returns the default (single-replica)
`tf.distribute.Strategy` object.
"""
return _get_per_thread_mode().strategy
@tf_export("distribute.has_strategy")
def has_strategy():
"""Return if there is a current non-default `tf.distribute.Strategy`.
```
assert not tf.distribute.has_strategy()
with strategy.scope():
assert tf.distribute.has_strategy()
```
Returns:
True if inside a `with strategy.scope():`.
"""
return get_strategy() is not _get_default_strategy()
def get_strategy_and_replica_context():
per_thread_mode = _get_per_thread_mode()
return (per_thread_mode.strategy, per_thread_mode.replica_context)
@tf_export("distribute.experimental_set_strategy")
def experimental_set_strategy(strategy):
"""Set a `tf.distribute.Strategy` as current without `with strategy.scope()`.
```
tf.distribute.experimental_set_strategy(strategy1)
f()
tf.distribute.experimental_set_strategy(strategy2)
g()
tf.distribute.experimental_set_strategy(None)
h()
```
is equivalent to:
```
with strategy1.scope():
f()
with strategy2.scope():
g()
h()
```
In general, you should use the `with strategy.scope():` API, but this
alternative may be convenient in notebooks where you would have to put
each cell in a `with strategy.scope():` block.
Note: This should only be called outside of any TensorFlow scope to
avoid improper nesting.
Args:
strategy: A `tf.distribute.Strategy` object or None.
Raises:
RuntimeError: If called inside a `with strategy.scope():`.
"""
old_scope = ops.get_default_graph()._global_distribute_strategy_scope # pylint: disable=protected-access
if old_scope is not None:
old_scope.__exit__(None, None, None)
ops.get_default_graph()._global_distribute_strategy_scope = None # pylint: disable=protected-access
if has_strategy():
raise RuntimeError(
"Must not be called inside a `tf.distribute.Strategy` scope.")
if strategy is not None:
new_scope = strategy.scope()
new_scope.__enter__()
ops.get_default_graph()._global_distribute_strategy_scope = new_scope # pylint: disable=protected-access
# ------------------------------------------------------------------------------
# Internal helpers.
@contextlib.contextmanager
def enter_or_assert_strategy(strategy):
if not has_strategy():
with strategy.scope():
yield
else:
_assert_strategy(strategy)
yield
# ------------------------------------------------------------------------------
# Defaults that are used when no tf.distribute.Strategy is explicitly created.
# We create them lazily in a function so that we can workaround the circular
# dependency on distribute_lib. See lazy loader at the top of this file.
_defaults = {
"strategy": None,
"replica_context": None,
"replica_mode": None
}
# Note: These need to be different locks since _get_default_replica_context
# calls _get_default_strategy inside its lock, and them using the same lock
# can lead to deadlock.
_default_strategy_lock = threading.Lock()
_default_replica_context_lock = threading.Lock()
_default_replica_mode_lock = threading.Lock()
def _assert_strategy(strategy):
if not has_strategy():
raise RuntimeError('Need to be inside "with strategy.scope()" for %s' %
(strategy,))
current_strategy = get_strategy()
if current_strategy is not strategy:
raise RuntimeError(
"Mixing different tf.distribute.Strategy objects: %s is not %s" %
(current_strategy, strategy))
def _get_default_strategy():
if _defaults["strategy"] is None:
# Avoid race condition causing two defaults to be created
with _default_strategy_lock:
if _defaults["strategy"] is None:
# pylint: disable=protected-access
# Make sure distribute_lib module is loaded by accessing some member.
_ = distribute_lib._creating_default_strategy_singleton
distribute_lib._creating_default_strategy_singleton = True
if tf2.enabled():
_defaults["strategy"] = distribute_lib._DefaultDistributionStrategy()
else:
_defaults["strategy"] = (
distribute_lib._DefaultDistributionStrategyV1())
distribute_lib._creating_default_strategy_singleton = False
# pylint: enable=protected-access
return _defaults["strategy"]
def _get_default_replica_context():
if _defaults["replica_context"] is None:
# Avoid race condition causing two defaults to be created
with _default_replica_context_lock:
if _defaults["replica_context"] is None:
# pylint: disable=protected-access
_defaults["replica_context"] = distribute_lib._DefaultReplicaContext(
_get_default_strategy(), replica_id_in_sync_group=0)
# pylint: enable=protected-access
return _defaults["replica_context"]
def _get_default_replica_mode():
if _defaults["replica_mode"] is None:
# Avoid race condition causing two defaults to be created
with _default_replica_mode_lock:
if _defaults["replica_mode"] is None:
_defaults["replica_mode"] = _DefaultReplicaThreadMode()
return _defaults["replica_mode"]
# Aliases for compatibility with old names.
get_distribution_strategy = get_strategy
has_distribution_strategy = has_strategy