A. Unique TensorFlower 034633f23b PY2 removal cleanup
PiperOrigin-RevId: 352106691
Change-Id: I382d53c64f0d29da430b8cb6d2395a2cb281509e
2021-01-15 16:48:57 -08:00
..
2020-07-27 00:08:05 +00:00
2021-01-15 16:48:57 -08:00
2021-01-15 16:48:57 -08:00
2020-06-17 09:54:59 -07:00
2020-10-23 09:50:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-10-23 09:50:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00
2020-07-08 09:56:58 -07:00
2020-06-17 09:54:59 -07:00
2020-06-17 09:54:59 -07:00

TensorFlow Lite Converter

The TensorFlow Lite Converter converts TensorFlow graphs into TensorFlow Lite graphs. There are additional usages that are also detailed in the usage documentation.

Usage documentation

Usage information is given in these documents:

Where the converter fits in the TensorFlow landscape

Once an application developer has a trained TensorFlow model, the TensorFlow Lite Converter will accept that model and generate a TensorFlow Lite FlatBuffer file. The converter currently supports SavedModels, frozen graphs (models generated via freeze_graph.py), and tf.Keras model files. The TensorFlow Lite FlatBuffer file can be shipped to client devices, generally mobile devices, where the TensorFlow Lite interpreter handles them on-device. This flow is represented in the diagram below.

drawing