STT-tensorflow/tensorflow/lite/testing/op_tests/unique.py
Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

66 lines
2.3 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for unique."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_unique_tests(options):
"""Make a set of tests for Unique op."""
test_parameters = [{
"input_shape": [[1]],
"index_type": [tf.int32, tf.int64, None],
"input_values": [3]
}, {
"input_shape": [[5]],
"index_type": [tf.int32, tf.int64],
"input_values": [[3, 2, 1, 2, 3]]
}, {
"input_shape": [[7]],
"index_type": [tf.int32, tf.int64],
"input_values": [[1, 1, 1, 1, 1, 1, 1]]
}, {
"input_shape": [[5]],
"index_type": [tf.int32, tf.int64],
"input_values": [[3, 2, 1, 0, -1]]
}]
def build_graph(parameters):
"""Build the graph for the test case."""
input_tensor = tf.compat.v1.placeholder(
dtype=tf.int32, name="input", shape=parameters["input_shape"])
if parameters["index_type"] is None:
output = tf.unique(input_tensor)
else:
output = tf.unique(input_tensor, parameters["index_type"])
return [input_tensor], output
def build_inputs(parameters, sess, inputs, outputs):
input_values = [create_tensor_data(tf.int32, parameters["input_shape"])]
return input_values, sess.run(
outputs, feed_dict=dict(zip(inputs, input_values)))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)