STT-tensorflow/tensorflow/lite/testing/op_tests/transpose_conv.py
Karim Nosir c4e6470cf5 Add fusing pattern for Transpose conv with Add/Sub/Mul/Div.
Also, handles case with none bias.

PiperOrigin-RevId: 331196376
Change-Id: If38c3ae42720dbc776feccd956fc3b13962fec57
2020-09-11 12:27:50 -07:00

199 lines
7.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for transpose_conv."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
# Since compute output_shape is fairly complicated for
# tf.nn.conv2d_transpose input_sizes argument, so we here first perform a
# "conv2d" operation to get the output, then we use the output to feed in
# tf.nn.conv2d_backprop_input.
# This test will depend on the "conv2d" operation's correctness.
@register_make_test_function()
def make_transpose_conv_tests(options):
"""Make a set of tests to do transpose_conv."""
# Tensorflow only supports equal strides
test_parameters = [
{
"input_shape": [[1, 3, 4, 1], [1, 10, 10, 3], [3, 20, 20, 1]],
"filter_size": [[1, 1], [1, 2], [3, 3]],
"has_bias": [False],
"strides": [[1, 1, 1, 1], [1, 3, 3, 1]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"],
"channel_multiplier": [1, 2],
"output_shape": [[]],
"fully_quantize": [False],
"const_weight_bias": [False]
},
# TODO(yunluli): Adding simple tests for now to unblock edgetpu debugging.
# Need to add more test cases.
{
"input_shape": [[1, 3, 3, 1]],
"filter_size": [[3, 3, 2, 1]],
"has_bias": [False],
"strides": [[1, 1, 1, 1]],
"padding": ["SAME"],
"data_format": ["NHWC"],
"channel_multiplier": [1],
"output_shape": [[1, 3, 3, 2]],
"fully_quantize": [True],
"const_weight_bias": [True]
},
{
"input_shape": [[1, 3, 3, 1]],
"filter_size": [[3, 3, 2, 1]],
"has_bias": [False],
"strides": [[1, 1, 1, 1]],
"padding": ["SAME"],
"data_format": ["NHWC"],
"channel_multiplier": [1],
"output_shape": [[1, 3, 3, 2]],
"fully_quantize": [False],
"const_weight_bias": [True]
},
{
"input_shape": [[1, 3, 3, 1]],
"filter_size": [[3, 3, 2, 1]],
"has_bias": [False],
"strides": [[1, 2, 2, 1]],
"padding": ["SAME"],
"data_format": ["NHWC"],
"channel_multiplier": [1],
"output_shape": [[1, 6, 6, 2]],
"fully_quantize": [True],
"const_weight_bias": [True]
},
{
"input_shape": [[1, 4, 3, 1]],
"filter_size": [[3, 3, 2, 1]],
"has_bias": [False],
"strides": [[1, 2, 2, 1]],
"padding": ["SAME"],
"data_format": ["NHWC"],
"channel_multiplier": [1],
"output_shape": [[1, 8, 6, 2]],
"fully_quantize": [True],
"const_weight_bias": [True]
},
{
"input_shape": [[1, 3, 3, 1]],
"filter_size": [[3, 3, 2, 1]],
"has_bias": [True],
"strides": [[1, 1, 1, 1]],
"padding": ["SAME"],
"data_format": ["NHWC"],
"channel_multiplier": [1],
"output_shape": [[1, 3, 3, 2]],
"fully_quantize": [True],
"const_weight_bias": [True]
},
]
def get_tensor_shapes(parameters):
input_shape = parameters["input_shape"]
filter_size = parameters["filter_size"]
if not parameters["const_weight_bias"]:
filter_shape = filter_size + [
input_shape[3], parameters["channel_multiplier"]
]
return [input_shape, filter_shape]
return [input_shape, filter_size]
def build_graph(parameters):
"""Build a transpose_conv graph given `parameters`."""
input_shape, filter_shape = get_tensor_shapes(parameters)
input_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, name="input", shape=input_shape)
filter_input = tf.compat.v1.placeholder(
dtype=tf.float32, name="filter", shape=filter_shape)
if not parameters["const_weight_bias"]:
input_tensors = [input_tensor, filter_input]
conv_outputs = tf.nn.conv2d(
input_tensor,
filter_input,
strides=parameters["strides"],
padding=parameters["padding"],
data_format=parameters["data_format"])
out = tf.compat.v1.nn.conv2d_backprop_input(
input_shape,
filter_input,
conv_outputs,
strides=parameters["strides"],
padding=parameters["padding"],
data_format=parameters["data_format"])
else:
input_tensors = [input_tensor]
if parameters["fully_quantize"]:
filter_input = create_tensor_data(
np.float32, filter_shape, min_value=-1, max_value=1)
else:
filter_input = create_tensor_data(np.float32, filter_shape)
out = tf.nn.conv2d_transpose(
input_tensor,
filter_input,
parameters["output_shape"],
strides=parameters["strides"],
padding=parameters["padding"],
data_format=parameters["data_format"])
if parameters["has_bias"]:
if parameters["fully_quantize"]:
bias_input = create_tensor_data(
np.float32, (parameters["output_shape"][-1],),
min_value=-1,
max_value=1)
else:
bias_input = create_tensor_data(np.float32,
(parameters["output_shape"][-1],))
out = tf.nn.bias_add(
out, bias_input, data_format=parameters["data_format"])
mul_data = create_tensor_data(np.float32,
(parameters["output_shape"][-1],))
out = tf.math.multiply(out, mul_data)
return input_tensors, [out]
def build_inputs(parameters, sess, inputs, outputs):
input_shape, filter_shape = get_tensor_shapes(parameters)
if not parameters["const_weight_bias"]:
values = [
create_tensor_data(np.float32, input_shape),
create_tensor_data(np.float32, filter_shape)
]
else:
if parameters["fully_quantize"]:
values = [
create_tensor_data(
np.float32, input_shape, min_value=-1, max_value=1),
]
else:
values = [create_tensor_data(np.float32, input_shape),]
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)