61 lines
2.1 KiB
Python
61 lines
2.1 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test configs for softmax."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import tensorflow.compat.v1 as tf
|
|
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
|
|
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
|
|
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
|
|
|
|
|
|
@register_make_test_function()
|
|
def make_softmax_tests(options):
|
|
"""Make a set of tests to do softmax."""
|
|
|
|
test_parameters = [{
|
|
"dtype": [tf.float32],
|
|
"input_shape": [[1, 3, 4, 3], [2, 3], [3], [1, 4], [1, 1, 5],
|
|
[1, 1, 1, 6]],
|
|
"dim": [-1, 0],
|
|
"fully_quantize": [False, True],
|
|
}, {
|
|
"dtype": [tf.float32],
|
|
"input_shape": [[4, 7]],
|
|
"dim": [-1, 1],
|
|
"fully_quantize": [False, True],
|
|
}]
|
|
|
|
def build_graph(parameters):
|
|
input_tensor = tf.compat.v1.placeholder(
|
|
dtype=parameters["dtype"],
|
|
name="input",
|
|
shape=parameters["input_shape"])
|
|
out = tf.nn.softmax(input_tensor, dim=parameters["dim"])
|
|
return [input_tensor], [out]
|
|
|
|
def build_inputs(parameters, sess, inputs, outputs):
|
|
input_values = create_tensor_data(
|
|
parameters["dtype"],
|
|
parameters["input_shape"],
|
|
min_value=-1,
|
|
max_value=1)
|
|
return [input_values], sess.run(
|
|
outputs, feed_dict=dict(zip(inputs, [input_values])))
|
|
|
|
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
|