64 lines
2.7 KiB
Python
64 lines
2.7 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test configs for shape."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import tensorflow.compat.v1 as tf
|
|
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
|
|
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
|
|
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
|
|
|
|
|
|
@register_make_test_function()
|
|
def make_shape_tests(options):
|
|
"""Make a set of tests to do shape."""
|
|
|
|
test_parameters = [{
|
|
"input_dtype": [tf.float32, tf.int32],
|
|
"input_shape": [[1, 4]],
|
|
"new_shape": [[1, 4], [4, 1], [2, 2]],
|
|
"out_type": [tf.int32, tf.int64],
|
|
}]
|
|
|
|
def build_graph(parameters):
|
|
"""Build the shape op testing graph."""
|
|
# Note that we intentionally leave out the shape from the input placeholder
|
|
# to prevent the Shape operation from being optimized out during conversion.
|
|
# TODO(haoliang): Test shape op directly after we have better support for
|
|
# dynamic input. Currently we need to introduce a Reshape op to prevent
|
|
# shape being constant-folded.
|
|
input_value = tf.compat.v1.placeholder(
|
|
dtype=parameters["input_dtype"],
|
|
shape=parameters["input_shape"],
|
|
name="input")
|
|
shape_of_new_shape = [len(parameters["new_shape"])]
|
|
new_shape = tf.compat.v1.placeholder(
|
|
dtype=tf.int32, shape=shape_of_new_shape, name="new_shape")
|
|
reshaped = tf.reshape(input_value, shape=new_shape)
|
|
out = tf.shape(reshaped, out_type=parameters["out_type"])
|
|
return [input_value, new_shape], [out]
|
|
|
|
def build_inputs(parameters, sess, inputs, outputs):
|
|
input_value = create_tensor_data(parameters["input_dtype"],
|
|
parameters["input_shape"])
|
|
new_shape = np.array(parameters["new_shape"])
|
|
return [input_value, new_shape], sess.run(
|
|
outputs, feed_dict=dict(zip(inputs, [input_value, new_shape])))
|
|
|
|
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
|