STT-tensorflow/tensorflow/lite/testing/op_tests/shape.py
Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

64 lines
2.7 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for shape."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_shape_tests(options):
"""Make a set of tests to do shape."""
test_parameters = [{
"input_dtype": [tf.float32, tf.int32],
"input_shape": [[1, 4]],
"new_shape": [[1, 4], [4, 1], [2, 2]],
"out_type": [tf.int32, tf.int64],
}]
def build_graph(parameters):
"""Build the shape op testing graph."""
# Note that we intentionally leave out the shape from the input placeholder
# to prevent the Shape operation from being optimized out during conversion.
# TODO(haoliang): Test shape op directly after we have better support for
# dynamic input. Currently we need to introduce a Reshape op to prevent
# shape being constant-folded.
input_value = tf.compat.v1.placeholder(
dtype=parameters["input_dtype"],
shape=parameters["input_shape"],
name="input")
shape_of_new_shape = [len(parameters["new_shape"])]
new_shape = tf.compat.v1.placeholder(
dtype=tf.int32, shape=shape_of_new_shape, name="new_shape")
reshaped = tf.reshape(input_value, shape=new_shape)
out = tf.shape(reshaped, out_type=parameters["out_type"])
return [input_value, new_shape], [out]
def build_inputs(parameters, sess, inputs, outputs):
input_value = create_tensor_data(parameters["input_dtype"],
parameters["input_shape"])
new_shape = np.array(parameters["new_shape"])
return [input_value, new_shape], sess.run(
outputs, feed_dict=dict(zip(inputs, [input_value, new_shape])))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)