147 lines
5.1 KiB
Python
147 lines
5.1 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test configs for pool operators."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import tensorflow.compat.v1 as tf
|
|
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
|
|
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
|
|
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
|
|
|
|
|
|
def make_pool_tests(pool_op_in, allow_fully_quantize=False):
|
|
"""Make a set of tests to do average pooling.
|
|
|
|
Args:
|
|
pool_op_in: TensorFlow pooling operation to test i.e. `tf.nn.avg_pool2d`.
|
|
allow_fully_quantize: bool, whether fully_quantize is allowed.
|
|
|
|
Returns:
|
|
A function representing the true generator (after curried pool_op_in).
|
|
"""
|
|
|
|
pool_op = pool_op_in
|
|
|
|
def f(options, expected_tf_failures=0):
|
|
"""Actual function that generates examples.
|
|
|
|
Args:
|
|
options: An Options instance.
|
|
expected_tf_failures: number of expected tensorflow failures.
|
|
"""
|
|
|
|
# Chose a set of parameters
|
|
test_parameters = [
|
|
{
|
|
"ksize": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1], [1, 10, 11, 1]],
|
|
"strides": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1],
|
|
[1, 10, 11, 1]],
|
|
# TODO(aselle): should add a degenerate shape (e.g. [1, 0, 1, 1]).
|
|
"input_shape": [[], [1, 1, 1, 1], [1, 15, 14, 1], [3, 15, 14, 3]],
|
|
"padding": ["SAME", "VALID"],
|
|
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
|
|
"fully_quantize": [False],
|
|
"quant_16x8": [False]
|
|
},
|
|
{
|
|
"ksize": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1], [1, 10, 11, 1]],
|
|
"strides": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1],
|
|
[1, 10, 11, 1]],
|
|
# TODO(aselle): should add a degenerate shape (e.g. [1, 0, 1, 1]).
|
|
"input_shape": [[], [1, 1, 1, 1], [1, 15, 14, 1], [3, 15, 14, 3]],
|
|
"padding": ["SAME", "VALID"],
|
|
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
|
|
"fully_quantize": [True],
|
|
"quant_16x8": [False]
|
|
},
|
|
{
|
|
"ksize": [[1, 1, 1, 1]],
|
|
"strides": [[1, 1, 1, 1]],
|
|
"input_shape": [[1, 1, 1, 1]],
|
|
"padding": ["SAME", "VALID"],
|
|
"data_format": ["NHWC"],
|
|
"fully_quantize": [True],
|
|
"quant_16x8": [True]
|
|
}
|
|
]
|
|
# test_parameters include fully_quantize option only when
|
|
# allow_fully_quantize is True.
|
|
if not allow_fully_quantize:
|
|
test_parameters = [
|
|
test_parameter for test_parameter in test_parameters
|
|
if True not in test_parameter["fully_quantize"]
|
|
]
|
|
|
|
def build_graph(parameters):
|
|
input_tensor = tf.compat.v1.placeholder(
|
|
dtype=tf.float32, name="input", shape=parameters["input_shape"])
|
|
out = pool_op(
|
|
input_tensor,
|
|
ksize=parameters["ksize"],
|
|
strides=parameters["strides"],
|
|
data_format=parameters["data_format"],
|
|
padding=parameters["padding"])
|
|
return [input_tensor], [out]
|
|
|
|
def build_inputs(parameters, sess, inputs, outputs):
|
|
if allow_fully_quantize:
|
|
input_values = create_tensor_data(
|
|
tf.float32, parameters["input_shape"], min_value=-1, max_value=1)
|
|
else:
|
|
input_values = create_tensor_data(tf.float32, parameters["input_shape"])
|
|
return [input_values], sess.run(
|
|
outputs, feed_dict=dict(zip(inputs, [input_values])))
|
|
|
|
make_zip_of_tests(
|
|
options,
|
|
test_parameters,
|
|
build_graph,
|
|
build_inputs,
|
|
expected_tf_failures=expected_tf_failures)
|
|
|
|
return f
|
|
|
|
|
|
def make_l2_pool(input_tensor, ksize, strides, padding, data_format):
|
|
"""Given an input perform a sequence of TensorFlow ops to produce l2pool."""
|
|
return tf.sqrt(
|
|
tf.nn.avg_pool(
|
|
tf.square(input_tensor),
|
|
ksize=ksize,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format))
|
|
|
|
|
|
@register_make_test_function()
|
|
def make_l2_pool_tests(options):
|
|
make_pool_tests(make_l2_pool)(options, expected_tf_failures=80)
|
|
|
|
|
|
@register_make_test_function()
|
|
def make_avg_pool_tests(options):
|
|
make_pool_tests(
|
|
tf.nn.avg_pool, allow_fully_quantize=True)(
|
|
options, expected_tf_failures=160)
|
|
|
|
|
|
@register_make_test_function()
|
|
def make_max_pool_tests(options):
|
|
make_pool_tests(
|
|
tf.nn.max_pool, allow_fully_quantize=True)(
|
|
options, expected_tf_failures=160)
|