STT-tensorflow/tensorflow/lite/testing/op_tests/pool.py
TensorFlower Gardener 3adc7cf2c9 Merge pull request from wwwind:op_tests_16x8
PiperOrigin-RevId: 320661178
2020-07-10 13:14:01 -07:00

147 lines
5.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for pool operators."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
def make_pool_tests(pool_op_in, allow_fully_quantize=False):
"""Make a set of tests to do average pooling.
Args:
pool_op_in: TensorFlow pooling operation to test i.e. `tf.nn.avg_pool2d`.
allow_fully_quantize: bool, whether fully_quantize is allowed.
Returns:
A function representing the true generator (after curried pool_op_in).
"""
pool_op = pool_op_in
def f(options, expected_tf_failures=0):
"""Actual function that generates examples.
Args:
options: An Options instance.
expected_tf_failures: number of expected tensorflow failures.
"""
# Chose a set of parameters
test_parameters = [
{
"ksize": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1], [1, 10, 11, 1]],
"strides": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1],
[1, 10, 11, 1]],
# TODO(aselle): should add a degenerate shape (e.g. [1, 0, 1, 1]).
"input_shape": [[], [1, 1, 1, 1], [1, 15, 14, 1], [3, 15, 14, 3]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
"fully_quantize": [False],
"quant_16x8": [False]
},
{
"ksize": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1], [1, 10, 11, 1]],
"strides": [[2, 1, 1, 2], [1, 1, 1, 1], [1, 1, 2, 1],
[1, 10, 11, 1]],
# TODO(aselle): should add a degenerate shape (e.g. [1, 0, 1, 1]).
"input_shape": [[], [1, 1, 1, 1], [1, 15, 14, 1], [3, 15, 14, 3]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
"fully_quantize": [True],
"quant_16x8": [False]
},
{
"ksize": [[1, 1, 1, 1]],
"strides": [[1, 1, 1, 1]],
"input_shape": [[1, 1, 1, 1]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"],
"fully_quantize": [True],
"quant_16x8": [True]
}
]
# test_parameters include fully_quantize option only when
# allow_fully_quantize is True.
if not allow_fully_quantize:
test_parameters = [
test_parameter for test_parameter in test_parameters
if True not in test_parameter["fully_quantize"]
]
def build_graph(parameters):
input_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, name="input", shape=parameters["input_shape"])
out = pool_op(
input_tensor,
ksize=parameters["ksize"],
strides=parameters["strides"],
data_format=parameters["data_format"],
padding=parameters["padding"])
return [input_tensor], [out]
def build_inputs(parameters, sess, inputs, outputs):
if allow_fully_quantize:
input_values = create_tensor_data(
tf.float32, parameters["input_shape"], min_value=-1, max_value=1)
else:
input_values = create_tensor_data(tf.float32, parameters["input_shape"])
return [input_values], sess.run(
outputs, feed_dict=dict(zip(inputs, [input_values])))
make_zip_of_tests(
options,
test_parameters,
build_graph,
build_inputs,
expected_tf_failures=expected_tf_failures)
return f
def make_l2_pool(input_tensor, ksize, strides, padding, data_format):
"""Given an input perform a sequence of TensorFlow ops to produce l2pool."""
return tf.sqrt(
tf.nn.avg_pool(
tf.square(input_tensor),
ksize=ksize,
strides=strides,
padding=padding,
data_format=data_format))
@register_make_test_function()
def make_l2_pool_tests(options):
make_pool_tests(make_l2_pool)(options, expected_tf_failures=80)
@register_make_test_function()
def make_avg_pool_tests(options):
make_pool_tests(
tf.nn.avg_pool, allow_fully_quantize=True)(
options, expected_tf_failures=160)
@register_make_test_function()
def make_max_pool_tests(options):
make_pool_tests(
tf.nn.max_pool, allow_fully_quantize=True)(
options, expected_tf_failures=160)