STT-tensorflow/tensorflow/lite/testing/op_tests/one_hot.py
Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

86 lines
3.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for one_hot."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_one_hot_tests(options):
"""Make a set of tests to do one_hot."""
test_parameters = [{
"indices_type": [tf.int32, tf.int64],
"indices_shape": [[3], [4, 4], [1, 5], [5, 1]],
"axis": [0, 1],
"dtype": [tf.int32, tf.int64, tf.float32],
"provide_optional_inputs": [True, False],
}]
def build_graph(parameters):
"""Build the one_hot op testing graph."""
indices = tf.compat.v1.placeholder(
dtype=parameters["indices_type"],
name="indices",
shape=parameters["indices_shape"])
depth = tf.compat.v1.placeholder(dtype=tf.int32, name="depth", shape=())
if not parameters["provide_optional_inputs"]:
out = tf.one_hot(indices=indices, depth=depth)
return [indices, depth], [out]
on_value = tf.compat.v1.placeholder(
dtype=parameters["dtype"], name="on_value", shape=())
off_value = tf.compat.v1.placeholder(
dtype=parameters["dtype"], name="off_value", shape=())
out = tf.one_hot(
indices=indices,
depth=depth,
on_value=on_value,
off_value=off_value,
axis=parameters["axis"],
dtype=parameters["dtype"])
return [indices, depth, on_value, off_value], [out]
def build_inputs(parameters, sess, inputs, outputs):
"""Build the input for one_hot op."""
input_values = [
create_tensor_data(
parameters["indices_type"],
shape=parameters["indices_shape"],
min_value=-1,
max_value=10),
create_tensor_data(tf.int32, shape=None, min_value=1, max_value=10),
]
if parameters["provide_optional_inputs"]:
input_values.append(
create_tensor_data(
parameters["dtype"], shape=None, min_value=1, max_value=10))
input_values.append(
create_tensor_data(
parameters["dtype"], shape=None, min_value=-1, max_value=0))
return input_values, sess.run(
outputs, feed_dict=dict(zip(inputs, input_values)))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)