STT-tensorflow/tensorflow/lite/testing/op_tests/leaky_relu.py
TensorFlower Gardener 25636f8bcb Merge pull request from wwwind:16x8_op_tests_leaky_relu
PiperOrigin-RevId: 328692051
2020-08-27 01:11:07 -07:00

55 lines
2.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for leaky_relu."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_leaky_relu_tests(options):
"""Make a set of tests to do LeakyRelu."""
test_parameters = [{
"input_shape": [[], [1], [5], [1, 10, 10, 3], [3, 3, 3, 3]],
"alpha": [0.1, 1.0, 2.0, -0.1, -1.0, -2.0],
"fully_quantize": [False, True],
"input_range": [(-3, 10)],
"quant_16x8": [False, True],
}]
def build_graph(parameters):
"""Build the graph for the test case."""
input_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, name="input", shape=parameters["input_shape"])
out = tf.nn.leaky_relu(input_tensor, alpha=parameters["alpha"])
return [input_tensor], [out]
def build_inputs(parameters, sess, inputs, outputs):
"""Build the inputs for the test case."""
input_values = create_tensor_data(
np.float32, parameters["input_shape"], min_value=-3, max_value=10)
return [input_values], sess.run(
outputs, feed_dict=dict(zip(inputs, [input_values])))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)