STT-tensorflow/tensorflow/lite/testing/op_tests/fully_connected.py
TensorFlower Gardener 3adc7cf2c9 Merge pull request #39543 from wwwind:op_tests_16x8
PiperOrigin-RevId: 320661178
2020-07-10 13:14:01 -07:00

161 lines
5.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for fully_connected."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_fully_connected_tests(options):
"""Make a set of tests to do fully_connected."""
test_parameters = [{
"shape1": [[3, 3]],
"shape2": [[3, 3]],
"transpose_a": [True, False],
"transpose_b": [True, False],
"constant_filter": [True, False],
"fully_quantize": [False],
"quant_16x8": [False]
}, {
"shape1": [[4, 4], [1, 4], [4]],
"shape2": [[4, 4], [4, 1], [4]],
"transpose_a": [False],
"transpose_b": [False],
"constant_filter": [True, False],
"fully_quantize": [False],
"quant_16x8": [False]
}, {
"shape1": [[40, 37]],
"shape2": [[37, 40]],
"transpose_a": [False],
"transpose_b": [False],
"constant_filter": [True, False],
"fully_quantize": [False],
"quant_16x8": [False]
}, {
"shape1": [[40, 37]],
"shape2": [[40, 37]],
"transpose_a": [False],
"transpose_b": [True],
"constant_filter": [True, False],
"fully_quantize": [False],
"quant_16x8": [False]
}, {
"shape1": [[5, 3]],
"shape2": [[5, 3]],
"transpose_a": [True],
"transpose_b": [False],
"constant_filter": [True, False],
"fully_quantize": [False],
"quant_16x8": [False]
}, {
"shape1": [[1, 3]],
"shape2": [[3, 3]],
"transpose_a": [False],
"transpose_b": [False],
"constant_filter": [True],
"fully_quantize": [True],
"quant_16x8": [False]
}, {
"shape1": [[1, 4], [4]],
"shape2": [[4, 4], [4, 1], [4]],
"transpose_a": [False],
"transpose_b": [False],
"constant_filter": [True],
"fully_quantize": [True],
"quant_16x8": [False]
}, {
"shape1": [[1, 37], [2, 37]],
"shape2": [[37, 40]],
"transpose_a": [False],
"transpose_b": [False],
"constant_filter": [True],
"fully_quantize": [True],
"quant_16x8": [False]
}, {
"shape1": [[1, 3], [2, 3]],
"shape2": [[3, 5], [3, 1]],
"transpose_a": [False],
"transpose_b": [False],
"constant_filter": [True],
"fully_quantize": [True],
"quant_16x8": [False]
}, {
"shape1": [[2, 3]],
"shape2": [[3, 5]],
"transpose_a": [False],
"transpose_b": [False],
"constant_filter": [True],
"fully_quantize": [True],
"quant_16x8": [True]
}]
def build_graph(parameters):
"""Build a matmul graph given `parameters`."""
input_tensor1 = tf.compat.v1.placeholder(
dtype=tf.float32, name="input1", shape=parameters["shape1"])
# Get input_tensor2 either as a placeholder or constants. Also get a list of
# the input tensors that are represented as placeholders.
if parameters["constant_filter"]:
input_tensor2 = create_tensor_data(
np.float32, parameters["shape2"], min_value=-1, max_value=1)
input_tensors = [input_tensor1]
else:
input_tensor2 = tf.compat.v1.placeholder(
dtype=tf.float32, name="input2", shape=parameters["shape2"])
input_tensors = [input_tensor1, input_tensor2]
out = tf.matmul(
input_tensor1,
input_tensor2,
transpose_a=parameters["transpose_a"],
transpose_b=parameters["transpose_b"])
return input_tensors, [out]
def build_inputs(parameters, sess, inputs, outputs):
# pylint: disable=g-doc-return-or-yield, g-doc-args
"""Build list of input values.
It either contains 1 tensor (input_values1) or
2 tensors (input_values1, input_values2) based on whether the second input
is a constant or variable input.
"""
values = [
create_tensor_data(
np.float32, shape=parameters["shape1"], min_value=-1, max_value=1)
]
if not parameters["constant_filter"]:
values.append(
create_tensor_data(
np.float32, parameters["shape2"], min_value=-1, max_value=1))
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
make_zip_of_tests(
options,
test_parameters,
build_graph,
build_inputs,
expected_tf_failures=14)