STT-tensorflow/tensorflow/lite/testing/op_tests/fill.py
Hyeonjong Ryu a6fe69e318 String/Bool input support on TFLite Fill op
PiperOrigin-RevId: 305841870
Change-Id: Ibfbff33f039cca9da95fd80a2a3e95d048c456c5
2020-04-10 01:11:03 -07:00

61 lines
2.2 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for fill."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_scalar_data
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_fill_tests(options):
"""Make a set of tests to do fill."""
test_parameters = [{
"dims_dtype": [tf.int32, tf.int64],
"dims_shape": [[], [1], [3], [3, 3]],
"value_dtype": [tf.int32, tf.int64, tf.float32, tf.bool, tf.string],
}]
def build_graph(parameters):
"""Build the fill op testing graph."""
input1 = tf.compat.v1.placeholder(
dtype=parameters["dims_dtype"],
name="dims",
shape=parameters["dims_shape"])
input2 = tf.compat.v1.placeholder(
dtype=parameters["value_dtype"], name="value", shape=[])
out = tf.fill(input1, input2)
return [input1, input2], [out]
def build_inputs(parameters, sess, inputs, outputs):
input1 = create_tensor_data(parameters["dims_dtype"],
parameters["dims_shape"], 1)
input2 = create_scalar_data(parameters["value_dtype"])
return [input1, input2], sess.run(
outputs, feed_dict=dict(zip(inputs, [input1, input2])))
make_zip_of_tests(
options,
test_parameters,
build_graph,
build_inputs,
expected_tf_failures=20)