STT-tensorflow/tensorflow/lite/testing/op_tests/depthwiseconv.py
TensorFlower Gardener 3adc7cf2c9 Merge pull request from wwwind:op_tests_16x8
PiperOrigin-RevId: 320661178
2020-07-10 13:14:01 -07:00

144 lines
5.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for depthwiseconv."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_depthwiseconv_tests(options):
"""Make a set of tests to do convolution."""
# Tensorflow only supports equal strides
test_parameters = [
{
"input_shape": [[1, 3, 4, 3], [1, 10, 10, 3]],
"filter_size": [[1, 1], [1, 2], [3, 3]],
"strides": [[1, 1, 1, 1], [1, 3, 3, 1]],
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
"channel_multiplier": [1, 2],
"rate": [[1, 1]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"],
"constant_filter": [True, False],
"fully_quantize": [False],
"quant_16x8": [False]
},
{
"input_shape": [[1, 3, 4, 3]],
"filter_size": [[1, 1]],
"strides": [[1, 1, 2, 1]], # TF needs [1, x, x, 1]
"dilations": [[1, 1, 1, 1], [1, 2, 2, 1]],
"channel_multiplier": [2],
"rate": [[2, 2]], # Only [1, 1] is supported
"padding": ["SAME"],
"data_format": ["NHWC"],
"constant_filter": [True, False],
"fully_quantize": [False],
"quant_16x8": [False]
},
{
"input_shape": [[1, 3, 4, 3], [1, 10, 10, 3]],
"filter_size": [[1, 1], [1, 2], [3, 3]],
"strides": [[1, 1, 1, 1], [1, 3, 3, 1]],
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
"channel_multiplier": [1, 2],
"rate": [[1, 1]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"],
"constant_filter": [True],
"fully_quantize": [True],
"quant_16x8": [False]
},
{
"input_shape": [[1, 3, 4, 3]],
"filter_size": [[1, 2]],
"strides": [[1, 3, 3, 1]],
"dilations": [[1, 3, 2, 1]],
"channel_multiplier": [1],
"rate": [[1, 1]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"],
"constant_filter": [True],
"fully_quantize": [True],
"quant_16x8": [True]
},
]
def get_tensor_shapes(parameters):
input_shape = parameters["input_shape"]
filter_size = parameters["filter_size"]
filter_shape = filter_size + [
input_shape[3], parameters["channel_multiplier"]
]
return [input_shape, filter_shape]
def build_graph(parameters):
"""Build a depthwise conv graph given `parameters`."""
input_shape, filter_shape = get_tensor_shapes(parameters)
input_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, name="input", shape=input_shape)
# Get filter input either as a placeholder or constants. Also get a list of
# the input tensors that are represented as placeholders.
if parameters["constant_filter"]:
filter_input = create_tensor_data(np.float32, filter_shape)
input_tensors = [input_tensor]
else:
filter_input = tf.compat.v1.placeholder(
dtype=tf.float32, name="filter", shape=filter_shape)
input_tensors = [input_tensor, filter_input]
out = tf.nn.depthwise_conv2d(
input_tensor,
filter_input,
strides=parameters["strides"],
rate=parameters["rate"],
padding=parameters["padding"],
data_format=parameters["data_format"])
return input_tensors, [out]
def build_inputs(parameters, sess, inputs, outputs):
# pylint: disable=g-doc-return-or-yield, g-doc-args
"""Build list of input values.
It either contains 1 tensor (input) or 2 tensors (input, filter) based on
whether filter is constant or variable input.
"""
input_shape, filter_shape = get_tensor_shapes(parameters)
values = [
create_tensor_data(np.float32, input_shape, min_value=-1, max_value=1)
]
if not parameters["constant_filter"]:
values.append(
create_tensor_data(
np.float32, filter_shape, min_value=-1, max_value=1))
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
make_zip_of_tests(
options,
test_parameters,
build_graph,
build_inputs,
expected_tf_failures=4)