Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/45678 ``` tensorflow/lite/micro/tools/make/downloads/pigweed/pw_presubmit/py/pw_presubmit/format_code.py tensorflow/lite/micro/ -e "\.inc" -e "\.py" --fix ``` Copybara import of the project: -- 9372cbff4bd4c65fa269c9de1e09208106f030c7 by Advait Jain <advaitjain@users.noreply.github.com>: clangformat all the files under the micro directory. ``` tensorflow/lite/micro/tools/make/downloads/pigweed/pw_presubmit/py/pw_presubmit/format_code.py tensorflow/lite/micro/ -e "\.inc" -e "\.py" --fix ``` COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/tensorflow/pull/45678 from advaitjain:clang-format 9372cbff4bd4c65fa269c9de1e09208106f030c7 PiperOrigin-RevId: 347642692 Change-Id: I6eac70bde20818f3937b55db9a9170ca8b5ce793
582 lines
22 KiB
C++
582 lines
22 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/pooling.h"
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/padding.h"
|
|
#include "tensorflow/lite/micro/kernels/xtensa_hifi/xtensa_tf_micro_common.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace pooling {
|
|
|
|
namespace {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
TfLitePaddingValues padding;
|
|
};
|
|
|
|
TfLiteStatus CalculateOpData(const TfLiteContext* context,
|
|
const TfLitePoolParams* params,
|
|
const TfLiteTensor* input,
|
|
const TfLiteTensor* output, OpData* data) {
|
|
// input: batch, height, width, channel
|
|
int height = SizeOfDimension(input, 1);
|
|
int width = SizeOfDimension(input, 2);
|
|
|
|
int out_height, out_width;
|
|
|
|
data->padding = ComputePaddingHeightWidth(
|
|
params->stride_height, params->stride_width,
|
|
/*dilation_rate_height=*/1,
|
|
/*dilation_rate_width=*/1, height, width, params->filter_height,
|
|
params->filter_width, params->padding, &out_height, &out_width);
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus AverageEvalFloat(TfLiteContext* context, const TfLiteNode* node,
|
|
const TfLitePoolParams* params,
|
|
const OpData* data, const TfLiteTensor* input,
|
|
TfLiteTensor* output) {
|
|
float activation_min, activation_max;
|
|
CalculateActivationRange(params->activation, &activation_min,
|
|
&activation_max);
|
|
|
|
#if HIFI_VFPU
|
|
const int stride_height = params->stride_height;
|
|
const int stride_width = params->stride_width;
|
|
const int pad_width = data->padding.width;
|
|
const int pad_height = data->padding.height;
|
|
const int kernel_height = params->filter_height;
|
|
const int kernel_width = params->filter_width;
|
|
|
|
const RuntimeShape& input_shape = GetTensorShape(input);
|
|
const RuntimeShape& output_shape = GetTensorShape(output);
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
|
|
const float* inp_data_ptr;
|
|
float* out_data_ptr;
|
|
int inp_data_format = 0, out_data_format = 0, out_length;
|
|
int inp_precision = PREC_F32, out_precision = PREC_F32;
|
|
void* p_scratch;
|
|
int err, required_scratch = 0;
|
|
|
|
ALLOCATE_XTENSA_NNLIB_SCRATCH_MEM;
|
|
p_scratch = (void*)xtensa_nnlib_scratch_buf;
|
|
|
|
required_scratch = xa_nn_avgpool_getsize(
|
|
depth, inp_precision, out_precision, input_height, input_width,
|
|
kernel_height, kernel_width,
|
|
stride_width, // x_stride,
|
|
stride_height, // y_stride,
|
|
pad_width, // x_padding,
|
|
pad_height, // y_padding,
|
|
output_height, output_width, inp_data_format, out_data_format);
|
|
|
|
if (required_scratch <= 0) {
|
|
TF_LITE_KERNEL_LOG(context,
|
|
"AveragepoolFloat: xa_nn_avgpool_getsize failed");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
if (required_scratch > (int)XTENSA_NNLIB_MAX_SCRATCH_SIZE) {
|
|
TF_LITE_KERNEL_LOG(context,
|
|
"AveragepoolFloat: insufficient scratch memory");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
inp_data_ptr = GetTensorData<float>(input);
|
|
out_data_ptr = GetTensorData<float>(output);
|
|
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
err = xa_nn_avgpool_f32(
|
|
&out_data_ptr[output_height * output_width * depth * batch],
|
|
&inp_data_ptr[output_height * output_width * depth * batch],
|
|
input_height, input_width, depth, kernel_height, kernel_width,
|
|
stride_width, stride_height, pad_width, pad_height, output_height,
|
|
output_width, inp_data_format, out_data_format, p_scratch);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(err, "AveragepoolFloat: xa_nn_avgpool_f32 failed");
|
|
}
|
|
|
|
out_length = batches * output_height * output_width * depth;
|
|
uint32_t p_unalign_val = (uint32_t)out_data_ptr, p_align_val;
|
|
p_align_val = (p_unalign_val + 7) & (~7);
|
|
|
|
// pre loop for activation_min_max
|
|
int pre_loop_count = p_align_val - p_unalign_val;
|
|
pre_loop_count = MIN(pre_loop_count, out_length);
|
|
|
|
for (int i = 0; i < pre_loop_count; i++) {
|
|
ACTIVATION_MIN_MAX(float, out_data_ptr[i], out_data_ptr[i], activation_min,
|
|
activation_max)
|
|
}
|
|
|
|
out_length = out_length - pre_loop_count;
|
|
|
|
if (out_length) {
|
|
err = xa_nn_vec_activation_min_max_f32_f32(
|
|
out_data_ptr, out_data_ptr, activation_min, activation_max, out_length);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(
|
|
err, "AveragepoolFloat: xa_nn_vec_activation_min_max_f32_f32 failed");
|
|
}
|
|
#else
|
|
PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.float_activation_min = activation_min;
|
|
op_params.float_activation_max = activation_max;
|
|
reference_ops::AveragePool(
|
|
op_params, GetTensorShape(input), GetTensorData<float>(input),
|
|
GetTensorShape(output), GetTensorData<float>(output));
|
|
#endif /* HIFI_VFPU */
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus AverageEvalQuantized(TfLiteContext* context,
|
|
const TfLiteNode* node,
|
|
const TfLitePoolParams* params,
|
|
const OpData* data, const TfLiteTensor* input,
|
|
TfLiteTensor* output) {
|
|
TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8);
|
|
int32_t activation_min, activation_max;
|
|
(void)CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
|
|
if (input->type == kTfLiteUInt8) {
|
|
const int stride_height = params->stride_height;
|
|
const int stride_width = params->stride_width;
|
|
const int pad_width = data->padding.width;
|
|
const int pad_height = data->padding.height;
|
|
const int kernel_height = params->filter_height;
|
|
const int kernel_width = params->filter_width;
|
|
|
|
const RuntimeShape& input_shape = GetTensorShape(input);
|
|
const RuntimeShape& output_shape = GetTensorShape(output);
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
|
|
const uint8_t* inp_data_ptr;
|
|
uint8_t* out_data_ptr;
|
|
int inp_data_format = 0, out_data_format = 0, out_length;
|
|
int inp_precision = PREC_ASYM8, out_precision = PREC_ASYM8;
|
|
void* p_scratch;
|
|
int err, required_scratch = 0;
|
|
|
|
ALLOCATE_XTENSA_NNLIB_SCRATCH_MEM;
|
|
p_scratch = (void*)xtensa_nnlib_scratch_buf;
|
|
|
|
required_scratch = xa_nn_avgpool_getsize(
|
|
depth, inp_precision, out_precision, input_height, input_width,
|
|
kernel_height, kernel_width,
|
|
stride_width, // x_stride,
|
|
stride_height, // y_stride,
|
|
pad_width, // x_padding,
|
|
pad_height, // y_padding,
|
|
output_height, output_width, inp_data_format, out_data_format);
|
|
|
|
if (required_scratch <= 0) {
|
|
TF_LITE_KERNEL_LOG(context,
|
|
"AveragepoolAsym8: xa_nn_avgpool_getsize failed");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
if (required_scratch > (int)XTENSA_NNLIB_MAX_SCRATCH_SIZE) {
|
|
TF_LITE_KERNEL_LOG(context,
|
|
"AveragepoolAsym8: insufficient scratch memory");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
inp_data_ptr = GetTensorData<uint8_t>(input);
|
|
out_data_ptr = GetTensorData<uint8_t>(output);
|
|
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
err = xa_nn_avgpool_asym8(
|
|
&out_data_ptr[output_height * output_width * depth * batch],
|
|
&inp_data_ptr[output_height * output_width * depth * batch],
|
|
input_height, input_width, depth, kernel_height, kernel_width,
|
|
stride_width, stride_height, pad_width, pad_height, output_height,
|
|
output_width, inp_data_format, out_data_format, p_scratch);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(err,
|
|
"AveragepoolAsym8: xa_nn_avgpool_asym8 failed");
|
|
}
|
|
|
|
out_length = batches * output_height * output_width * depth;
|
|
uint32_t p_unalign_val = (uint32_t)out_data_ptr, p_align_val;
|
|
p_align_val = (p_unalign_val + 7) & (~7);
|
|
|
|
// pre loop for activation_min_max
|
|
int pre_loop_count = p_align_val - p_unalign_val;
|
|
pre_loop_count = MIN(pre_loop_count, out_length);
|
|
|
|
for (int i = 0; i < pre_loop_count; i++) {
|
|
ACTIVATION_MIN_MAX_ASYM8(out_data_ptr[i], out_data_ptr[i], activation_min,
|
|
activation_max)
|
|
}
|
|
|
|
out_length = out_length - pre_loop_count;
|
|
|
|
if (out_length > 0) {
|
|
err = xa_nn_vec_activation_min_max_asym8_asym8(
|
|
out_data_ptr, out_data_ptr, activation_min, activation_max,
|
|
out_length);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(
|
|
err,
|
|
"AveragepoolAsym8: xa_nn_vec_activation_min_max_asym8_asym8 failed");
|
|
}
|
|
} else {
|
|
PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.quantized_activation_min = activation_min;
|
|
op_params.quantized_activation_max = activation_max;
|
|
reference_integer_ops::AveragePool(
|
|
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
|
|
GetTensorShape(output), GetTensorData<int8_t>(output));
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
float activation_min, activation_max;
|
|
CalculateActivationRange(params->activation, &activation_min,
|
|
&activation_max);
|
|
|
|
#if HIFI_VFPU
|
|
const int stride_height = params->stride_height;
|
|
const int stride_width = params->stride_width;
|
|
const int pad_width = data->padding.width;
|
|
const int pad_height = data->padding.height;
|
|
const int kernel_height = params->filter_height;
|
|
const int kernel_width = params->filter_width;
|
|
|
|
const RuntimeShape& input_shape = GetTensorShape(input);
|
|
const RuntimeShape& output_shape = GetTensorShape(output);
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
|
|
const float* inp_data_ptr;
|
|
float* out_data_ptr;
|
|
int inp_data_format = 0, out_data_format = 0, out_length;
|
|
int inp_precision = PREC_F32, out_precision = PREC_F32;
|
|
void* p_scratch;
|
|
int err, required_scratch = 0;
|
|
|
|
ALLOCATE_XTENSA_NNLIB_SCRATCH_MEM;
|
|
p_scratch = (void*)xtensa_nnlib_scratch_buf;
|
|
|
|
required_scratch = xa_nn_maxpool_getsize(
|
|
depth, inp_precision, out_precision, input_height, input_width,
|
|
kernel_height, kernel_width,
|
|
stride_width, // x_stride,
|
|
stride_height, // y_stride,
|
|
pad_width, // x_padding,
|
|
pad_height, // y_padding,
|
|
output_height, output_width, inp_data_format, out_data_format);
|
|
|
|
if (required_scratch <= 0) {
|
|
TF_LITE_KERNEL_LOG(context, "MaxpoolFloat: xa_nn_maxpool_getsize failed");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
if (required_scratch > (int)XTENSA_NNLIB_MAX_SCRATCH_SIZE) {
|
|
TF_LITE_KERNEL_LOG(context, "MaxpoolFloat: insufficient scratch memory");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
inp_data_ptr = GetTensorData<float>(input);
|
|
out_data_ptr = GetTensorData<float>(output);
|
|
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
err = xa_nn_maxpool_f32(
|
|
&out_data_ptr[output_height * output_width * depth * batch],
|
|
&inp_data_ptr[output_height * output_width * depth * batch],
|
|
input_height, input_width, depth, kernel_height, kernel_width,
|
|
stride_width, stride_height, pad_width, pad_height, output_height,
|
|
output_width, inp_data_format, out_data_format, p_scratch);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(err, "MaxpoolFloat: xa_nn_maxpool_f32 failed");
|
|
}
|
|
|
|
out_length = batches * output_height * output_width * depth;
|
|
uint32_t p_unalign_val = (uint32_t)out_data_ptr, p_align_val;
|
|
p_align_val = (p_unalign_val + 7) & (~7);
|
|
|
|
// pre loop for activation_min_max
|
|
int pre_loop_count = p_align_val - p_unalign_val;
|
|
pre_loop_count = MIN(pre_loop_count, out_length);
|
|
|
|
for (int i = 0; i < pre_loop_count; i++) {
|
|
ACTIVATION_MIN_MAX(float, out_data_ptr[i], out_data_ptr[i], activation_min,
|
|
activation_max)
|
|
}
|
|
|
|
out_length = out_length - pre_loop_count;
|
|
|
|
if (out_length > 0) {
|
|
err = xa_nn_vec_activation_min_max_f32_f32(
|
|
out_data_ptr, out_data_ptr, activation_min, activation_max, out_length);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(
|
|
err, "MaxpoolFloat: xa_nn_vec_activation_min_max_f32_f32 failed");
|
|
}
|
|
#else
|
|
tflite::PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.float_activation_min = activation_min;
|
|
op_params.float_activation_max = activation_max;
|
|
reference_ops::MaxPool(op_params, GetTensorShape(input),
|
|
GetTensorData<float>(input), GetTensorShape(output),
|
|
GetTensorData<float>(output));
|
|
#endif /* HIFI_VFPU */
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus MaxEvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, OpData* data,
|
|
const TfLiteTensor* input, TfLiteTensor* output) {
|
|
TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8);
|
|
|
|
int32_t activation_min, activation_max;
|
|
(void)CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&activation_min, &activation_max);
|
|
|
|
if (input->type == kTfLiteUInt8) {
|
|
const int stride_height = params->stride_height;
|
|
const int stride_width = params->stride_width;
|
|
const int pad_width = data->padding.width;
|
|
const int pad_height = data->padding.height;
|
|
const int kernel_height = params->filter_height;
|
|
const int kernel_width = params->filter_width;
|
|
|
|
const RuntimeShape& input_shape = GetTensorShape(input);
|
|
const RuntimeShape& output_shape = GetTensorShape(output);
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
|
|
const uint8_t* inp_data_ptr;
|
|
uint8_t* out_data_ptr;
|
|
int inp_data_format = 0, out_data_format = 0, out_length;
|
|
int inp_precision = PREC_ASYM8, out_precision = PREC_ASYM8;
|
|
void* p_scratch;
|
|
int err, required_scratch = 0;
|
|
|
|
ALLOCATE_XTENSA_NNLIB_SCRATCH_MEM;
|
|
p_scratch = (void*)xtensa_nnlib_scratch_buf;
|
|
|
|
required_scratch = xa_nn_maxpool_getsize(
|
|
depth, inp_precision, out_precision, input_height, input_width,
|
|
kernel_height, kernel_width,
|
|
stride_width, // x_stride,
|
|
stride_height, // y_stride,
|
|
pad_width, // x_padding,
|
|
pad_height, // y_padding,
|
|
output_height, output_width, inp_data_format, out_data_format);
|
|
|
|
if (required_scratch <= 0) {
|
|
TF_LITE_KERNEL_LOG(context, "MaxpoolAsym8: xa_nn_maxpool_getsize failed");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
if (required_scratch > (int)XTENSA_NNLIB_MAX_SCRATCH_SIZE) {
|
|
TF_LITE_KERNEL_LOG(context, "MaxpoolAsym8: insufficient scratch memory");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
inp_data_ptr = GetTensorData<uint8_t>(input);
|
|
out_data_ptr = GetTensorData<uint8_t>(output);
|
|
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
err = xa_nn_maxpool_asym8(
|
|
&out_data_ptr[output_height * output_width * depth * batch],
|
|
&inp_data_ptr[output_height * output_width * depth * batch],
|
|
input_height, input_width, depth, kernel_height, kernel_width,
|
|
stride_width, stride_height, pad_width, pad_height, output_height,
|
|
output_width, inp_data_format, out_data_format, p_scratch);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(err, "MaxpoolAsym8: xa_nn_maxpool_asym8 failed");
|
|
}
|
|
|
|
out_length = batches * output_height * output_width * depth;
|
|
uint32_t p_unalign_val = (uint32_t)out_data_ptr, p_align_val;
|
|
p_align_val = (p_unalign_val + 7) & (~7);
|
|
|
|
// pre loop for activation_min_max
|
|
int pre_loop_count = p_align_val - p_unalign_val;
|
|
pre_loop_count = MIN(pre_loop_count, out_length);
|
|
|
|
for (int i = 0; i < pre_loop_count; i++) {
|
|
ACTIVATION_MIN_MAX_ASYM8(out_data_ptr[i], out_data_ptr[i], activation_min,
|
|
activation_max)
|
|
}
|
|
|
|
out_length = out_length - pre_loop_count;
|
|
|
|
if (out_length > 0) {
|
|
err = xa_nn_vec_activation_min_max_asym8_asym8(
|
|
out_data_ptr, out_data_ptr, activation_min, activation_max,
|
|
out_length);
|
|
|
|
CHECK_ERR_HIFI_NNLIB_KER(
|
|
err, "MaxpoolAsym8: xa_nn_vec_activation_min_max_asym8_asym8 failed");
|
|
}
|
|
} else {
|
|
tflite::PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.quantized_activation_min = activation_min;
|
|
op_params.quantized_activation_max = activation_max;
|
|
reference_integer_ops::MaxPool(
|
|
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
|
|
GetTensorShape(output), GetTensorData<int8_t>(output));
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace
|
|
|
|
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
OpData data;
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, &data));
|
|
|
|
// Inputs and outputs share the same type, guaranteed by the converter.
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
AverageEvalFloat(context, node, params, &data, input, output);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
case kTfLiteInt8:
|
|
AverageEvalQuantized(context, node, params, &data, input, output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input type %s is not currently supported",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
OpData data;
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, &data));
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
MaxEvalFloat(context, node, params, &data, input, output);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
case kTfLiteInt8:
|
|
MaxEvalQuantized(context, node, params, &data, input, output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace pooling
|
|
|
|
TfLiteRegistration Register_AVERAGE_POOL_2D() {
|
|
return {/*init=*/nullptr,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/nullptr,
|
|
/*invoke=*/pooling::AverageEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
TfLiteRegistration Register_MAX_POOL_2D() {
|
|
return {/*init=*/nullptr,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/nullptr,
|
|
/*invoke=*/pooling::MaxEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|