122 lines
3.7 KiB
C++
122 lines
3.7 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace unpack {
|
|
namespace {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
|
|
template <typename T>
|
|
TfLiteStatus UnpackImpl(TfLiteContext* context, TfLiteNode* node,
|
|
const TfLiteEvalTensor* input, int output_count,
|
|
int axis) {
|
|
const TfLiteEvalTensor* output0 =
|
|
tflite::micro::GetEvalOutput(context, node, 0);
|
|
const TfLiteIntArray* input_dims = input->dims;
|
|
const TfLiteIntArray* output_dims = output0->dims;
|
|
const int dimensions = input_dims->size;
|
|
|
|
if (axis < 0) {
|
|
axis += input->dims->size;
|
|
}
|
|
|
|
TFLITE_DCHECK_LT(axis, dimensions);
|
|
|
|
int outer_size = 1;
|
|
for (int i = 0; i < axis; ++i) {
|
|
outer_size *= input_dims->data[i];
|
|
}
|
|
int copy_size = 1;
|
|
for (int i = axis + 1; i < dimensions; ++i) {
|
|
copy_size *= input_dims->data[i];
|
|
}
|
|
int output_size = 1;
|
|
for (int i = 0; i < output_dims->size; ++i) {
|
|
output_size *= output_dims->data[i];
|
|
}
|
|
TFLITE_DCHECK_EQ(output_size, copy_size * outer_size);
|
|
|
|
const T* input_data = tflite::micro::GetTensorData<T>(input);
|
|
|
|
for (int i = 0; i < output_count; ++i) {
|
|
TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i);
|
|
T* output_data = tflite::micro::GetTensorData<T>(t);
|
|
for (int k = 0; k < outer_size; ++k) {
|
|
T* output_ptr = output_data + copy_size * k;
|
|
int loc = k * output_count * copy_size + i * copy_size;
|
|
const T* input_ptr = input_data + loc;
|
|
for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j];
|
|
}
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
TfLiteUnpackParams* data =
|
|
reinterpret_cast<TfLiteUnpackParams*>(node->builtin_data);
|
|
|
|
const TfLiteEvalTensor* input =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32: {
|
|
return UnpackImpl<float>(context, node, input, data->num, data->axis);
|
|
}
|
|
case kTfLiteInt32: {
|
|
return UnpackImpl<int32_t>(context, node, input, data->num, data->axis);
|
|
}
|
|
case kTfLiteUInt8: {
|
|
return UnpackImpl<uint8_t>(context, node, input, data->num, data->axis);
|
|
}
|
|
case kTfLiteInt8: {
|
|
return UnpackImpl<int8_t>(context, node, input, data->num, data->axis);
|
|
}
|
|
default: {
|
|
TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by unpack.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace
|
|
} // namespace unpack
|
|
|
|
TfLiteRegistration Register_UNPACK() {
|
|
return {/*init=*/nullptr,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/nullptr,
|
|
/*invoke=*/unpack::Eval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|