123 lines
5.2 KiB
C++
123 lines
5.2 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/quantize.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/requantize.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/kernels/quantize.h"
|
|
#include "tensorflow/lite/micro/micro_utils.h"
|
|
|
|
namespace tflite {
|
|
|
|
TfLiteStatus EvalQuantizeReference(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
auto* data = static_cast<OpDataQuantizeReference*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
|
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
|
|
|
if (input->type == kTfLiteFloat32) {
|
|
switch (output->type) {
|
|
case kTfLiteInt8:
|
|
reference_ops::AffineQuantize(
|
|
data->quantization_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
break;
|
|
case kTfLiteUInt8:
|
|
reference_ops::AffineQuantize(
|
|
data->quantization_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
break;
|
|
case kTfLiteInt16:
|
|
reference_ops::AffineQuantize(
|
|
data->quantization_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int16_t>(output));
|
|
return kTfLiteOk;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else if (input->type == kTfLiteInt16) {
|
|
size_t size = ElementCount(*input->dims);
|
|
switch (output->type) {
|
|
case kTfLiteInt8:
|
|
reference_ops::Requantize(
|
|
tflite::micro::GetTensorData<int16_t>(input), size,
|
|
data->requantize_output_multiplier, data->requantize_output_shift,
|
|
data->input_zero_point, data->quantization_params.zero_point,
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
break;
|
|
case kTfLiteInt16:
|
|
reference_ops::Requantize(
|
|
tflite::micro::GetTensorData<int16_t>(input), size,
|
|
data->requantize_output_multiplier, data->requantize_output_shift,
|
|
data->input_zero_point, data->quantization_params.zero_point,
|
|
tflite::micro::GetTensorData<int16_t>(output));
|
|
return kTfLiteOk;
|
|
case kTfLiteInt32:
|
|
reference_ops::Requantize(
|
|
tflite::micro::GetTensorData<int16_t>(input), size,
|
|
data->requantize_output_multiplier, data->requantize_output_shift,
|
|
data->input_zero_point, data->quantization_params.zero_point,
|
|
tflite::micro::GetTensorData<int32_t>(output));
|
|
return kTfLiteOk;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else if (input->type == kTfLiteInt8) {
|
|
// Int8 to Int8 requantization, required if the input and output tensors
|
|
// have different scales and/or zero points.
|
|
size_t size = ElementCount(*input->dims);
|
|
switch (output->type) {
|
|
case kTfLiteInt8:
|
|
reference_ops::Requantize(
|
|
tflite::micro::GetTensorData<int8_t>(input), size,
|
|
data->requantize_output_multiplier, data->requantize_output_shift,
|
|
data->input_zero_point, data->quantization_params.zero_point,
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else {
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace tflite
|